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Abstract 

We develop a method for finding an optimal cut-score for Pass/Fail examinations which 

incorporates uncertainty about the ‘true’ point separating proficient examinees from non-

proficient ones. We derive false positive and false negative probabilities, introduce several 

classification metrics, and present software we have developed which performs these 

calculations for the user. 

  



There are at least two different incarnations of classification accuracy metrics that one 

can find the research literature: actual and predicted. Those methods which we term ‘actual’ are 

conducted post-hoc, when data collection has been completed. These methods include the 

familiar Sensitivity and Specificity (Yerushalmy, 1947), Youden’s J (Youden, 1950), and Kappa 

(Cohen, 1960), among others. The method we describe in the present article falls into the second 

category: predictive. We seek to explicate a method that can be used by researchers and 

standards setting panels to estimate what the rates of misclassification might be, thus providing 

crucial information to help judges make decisions.  

We are not the first to propose a method of estimating classification accuracy. Livingston 

(1993) described a method for estimating accuracy that was found to be very close to actual 

values. Lee (2010) explicated a method that could be used for such estimation with complicated 

item-response theory based assessments. Other methods are described in the literature, and we 

refer the reader to Lee (2010), who provide a more complete list. A common feature of such 

estimation methods is that they typically require, as an input, the user’s belief about where the 

cut-score should be. Rudner (2001) described a model for estimating accuracy, which also 

expected the operational cut-score to be known, but also went on to demonstrate how accuracy 

estimates change if the cut point is altered. The idea that a cut score might need to be adjusted 

has been the focus of the current authors preceding work on this topic.  

Grabovsky and Wainer (2017a & 2017b) described a method for estimating the optimal 

cut score. This method included estimation of accuracy at the inputted value of the cut score, but 

went on to explicate a method for determining the classification accuracy of different potential 

cut points. The inputted cut-score value was considered to be the ‘true’ score, which could be 

informed by a standards setting panel (e.g., via Angoff method [Angoff, 1971]). As the authors 



showed, the point of the true cut-score is not necessarily the point of optimal classification. 

While we, and others, have treated the true cut-score as a known value for our estimates, this is a 

strong assumption.  

That panelists vary in their estimates of the true cut-score is known to anyone who has 

participated in standard setting, and can be seen in any article which reports the results of 

standard setting (e.g., Buckendahl, Smith, Impara, and Plake, 2002). This variability, however, 

has not been included in previous methods attempting to estimate classification accuracy. In the 

present article, we explicate a method to include this variability in our estimates of accuracy, and 

our search for the optimal cut-score.  

Methods 

We begin by defining several measures of classification error. By searching over the 

values of these various measures we can identify the optimal cut-score. 

The first measure we consider is defined as the larger of the probabilities of false-positive 

and false-negative classification for each possible cut-score point C on the observed score scale, 

or maximal classification error  

 

When a standard setting is held, the Angoff method (Angoff, 1984) allows for a given 

judge to provide a possible value for the true cut score. If one were to select a content expert at 

random from the population of all relevant content experts, the value of the cut-score one would 

obtain would be a random variable. The distribution of this random variable is assumed herein to 

be normal. We estimate the mean and variance of this variable, which we subscript with A for 



Angoff, using the standard unbiased estimates commonly called the sample mean and standard 

deviation,  
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We proceed under the 1-PL/Rasch Item Response Theory model.  

The probability that an examinee with ability   answers a question of difficulty b 

correctly is: 

       
 

      
 

The proportion correct score,   ,for an examinee on a test with N items is: 
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Where       are independent Bernoulli variables (where a 1 is a correct response, and 0 is 

incorrect), with probability of success,       .   , then, is a sum of independent Bernoulli 

random variables divided by N, hence its mean and variance are 
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When the exam has many items, the probability that an examinee will fail the test, with a cut 

score of c, is estimatible using central limit theorem 
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Where   is the cumulative distribution function of a standard normal variable.  

The probability that an examinee has true ability above the true cut-score,   , is 

           
    

  
  

The probability that a given examinee fails, while their ability is above the true cut-score, is 

defined to be the false negative probability, which, by independence, is 
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The false negative probability is derived similarly, resulting in 
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Using test reliability, ρ, and the standard deviation of the examinee sample,   Ex, we can estimate 

true score variance,    (e.g., Harvill, 1991) 

  
     

          
     

   

If we select an examinee at random from the examinee population, then their ability,   , 

is normally distributed, N(      
   where     is the mean of true ability distribution. We can use 

the mean from the empirical theta distribution to estimate   . The probability of making a false 

negative classification across a specified small interval of true score values is approximated by: 

                              ) =                       



If we take the sum of all such intervals, where each interval is infinitely small, we have the 

integral which expresses the probability of making a false negative error on an exam: 
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And the false positive error 
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Where   is the PDF of a standard normal variable.  

 

The total probability of making an error is simply the sum of the two errors, i.e., FP+FN, 

and if we minimize this function we find the cut-score value of optimal classification (where 

total error is lowest).  

We also derive penalty based measures which seek to penalize extreme misclassifications 

more harshly. That is, the resulting optimal point will bend further away from those points where 

extreme classifications are taking place. We use the function 

      | |     

We choose a to be   . This leads to the function treating differences larger than    as 

meaningful. Deriving the resulting equations follows the same proceedures outlined above, but 

with the inclusion of the penalty function. We arrive at: 
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Finally, we have developed software which allows users to use either penalty or regular 

probability based measures to locate optimal cut scores. 

Software 

To aid standard setting members in using the method described here, we have developed 

easy-to-use software. The software is distributed as a .exe file which can be installed and run like 

any typical application. The software was developed using the R programming language (R Core 

Team, 2017), along with the packages Shiny (Chang, Cheng, Allaire, Xie, and McPherson, 2018) 

and RINNO (Hill et al., 2018). The user need only supply the proper inputs, which are (See 

figure 1): 

1)  A vector of item difficulties (1-PL) 

2) (optional) Entry of a lookup table from %correct to another metric, in case the user would 

prefer output in another metric 

3) The mean of the Angoff ratings  

4) SD of Angoff ratings 

5) Mean of Examinees abilities (1-PL) 

6) SD of Examinees abilities(1-PL) 

7) Test reliability 

This software identifies the optimal cut-score location, and also provides graphical output 

indicating the error at each point of the potential cut-score (see Figure 2). The method provides 



output via 5 metrics: one is the total error, described above. The software also supplies the point 

of minimal classification error for all methods we introduced. 

Discussion 

In this paper we have presented a method to incorporate uncertainty in standard setting 

into predictions of classification error, introduced penalty based errors, and explained the use of 

software which allows for ready use of our model.  

 The penalty function provides potential utility to standard setting committees in that it 

penalizes extreme classification mistakes more heavily than small mistakes. This could have 

utility in certain situations. For example, imagine medical licensure testing, which serves to 

protect the public from non-competent individuals practicing medicine. Competence likely exists 

on a continuum. It seems to follow directly that the public is put at greater harm when a 

particularly low competence examinee is accidentally allowed to pass a certification test, relative 

to when an almost minimally competent examinee is allowed to pass. Thus, penalizing such 

extreme mistakes more heavily seems to be a safer decision than treating all errors equally, since 

it serves to better protect the public. In other scenarios, however, this may be unnecessary, or 

counterproductive. The decision will have to be weighed by the standard setting committee. 

Decisions such as whether extreme misclassifications should be penalized greater, or 

whether or not false positives vs. false negatives should be weighted more heavily, or whether or 

not the true cut-score should be treated as a random variable, can all lead to different optimal cut 

scores. It behooves the standard setting committee to consider these questions when attempting 

to settle on a final cut score. The method explicated in this paper (and delivered via software) 



provides a mathematical method to incorporate these features in the final decision. Thus standard 

setting committees are provided an analytical way to consider these decisions. 

Limitations and future directions 

 The purpose of this paper has been to explicate the mathematical model for an unknown 

true cut score, to introduce the penalty function, and to offer software for use of these methods in 

standard setting. 

 The mathematical model accounts for variability in the true cut score by treating it as a 

random variable with an estimatable variance. While we can say that this variation has now been 

accounted for in the model, the magnitude and direction of the impact of accounting for this 

variability remains unstudied. Future research which compares optimal cut scores with and 

without treatment of the true cut score as a random variable is warranted.  
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Figure 1

Figure 2. 

Figure 3. Conditional probability of misclassification. 



 

Figure 4. 

  



Figure 5 

 

 

 

 

 


