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Abstract 

Certification testing attempts to classify individuals into mutually exclusive categories, 

such as competent and non-competent. There is some potential for error whenever a 

classification decision is made as a result of a test score. The Grabovsky and Wainer cutscore 

operating function (GW-CSOF) is a recent addition to classification error estimates. This method 

allows for the prediction of error rates at all possible cutscore locations, but requires that certain 

assumptions about the examinee distribution are met. How the estimates made by the GW-CSOF 

compare to actual error values is currently unknown. Furthermore, the extent to which deviations 

from GW-CSOF assumptions impact error estimates is also unknown. The aim of this 

dissertation was to explore the extent to which non-normality of examinee true scores impacted 

the correctness of the GW-CSOF estimates. Monte Carlo methods were used to generate true 

score samples with systematically increased non-normality, and GW-CSOF estimates were 

compared to actual error rates. Findings indicated that GW-CSOF produced good estimates of 

error rates and optimal cutscore location in truly normal and minimally non-normal simulations. 

The degree to which GW-CSOF produced incorrect estimates was significantly correlated with 

the degree of non-normality. Specific guidelines for standard setting are discussed. 
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Chapter 1: Introduction 

Classification is a process which involves making judgments in order to place 

observations into categories. There exist many statistical methods for classifying observations. 

Such methods arrive at a solution by attempting to minimize the number of incorrect 

classifications. When the true outcome of a classification decision is readily observable, such as 

whether or not a machine will work, logistic regression (e.g., Hastie, Tibshirani, and Friedman, 

2009) is a suitable statistical classification method. Using training data from cases where the 

outcome was observed, alongside predictor variables, a model can be built by finding the 

parameters which maximize the likelihood of the observations. Thus, with an appropriate method 

such as logistic regression, various predictors of the outcome can be used to make a prediction 

about the classification status of a given observation prior to that status being directly observed. 

However, education is often concerned with latent constructs, where traits are not directly 

observable. There are methods which model latent variables as categorical variables, e.g., 

Diagnostic Classification Models (DCMs; Rupp, Templin, & Henson, 2010) resulting in 

classification decisions based on estimated probabilities. Another method commonly employed 

to classify individuals on latent variables is by using a continuous distribution for the latent 

variable, such as in Classical Test Theory or Item Response Theory (CTT and IRT, respectively; 

see Lord and Novick, 1968) and then selecting a cutscore along that continuum which divides the 

two categories. How this cutscore is set is arbitary, but one common way to do so is via standard 

setting. The standard setting process most often relies on subject matter experts (SMEs) to guide 

the identification of a reasonable point for a cutscore (e.g. Livingston & Zieky, 1989). 

 Whichever method is used to classify individuals, some amount of error is expected to 

occur. Such classification errors are of two forms: false positives (FP) and false negatives (FN). 



2 
 

Suppose a test is given to determine whether or not examinees are competent or non-competent 

in some academic subject. FPs occur when a non-competent examinee receives a passing score, 

while FNs occur when a competent examinee receives a failing score. The sum of the two errors 

provides an index of the total error present. In the case where a cutscore is used to divide a 

continuous latent distribution, any changes to that cutscore’s location would likely change the 

total error as well. Thus, evaluating error rates across all possible cutscores allows one to 

determine the statistically optimal cut point (i.e., when the total error is minimized). Graphically 

speaking, this can be facilitated by plotting total error against all possible cutscores, and 

identifying the point where error is reaches its lowest point.  

 Determining the actual error after a test is given, and when there is a way to know the 

true status of an examinee, is straightforward and the calculation requires few assumptions. 

Other methods, via some strong statistical assumptions about the latent ability distribution, can 

estimate classification error. These methods are henceforth known as ‘predictive’ measures in 

this dissertation, in order to differentiate them from the actual error values as described above, 

and because they are, indeed, estimates of yet unknown actual values. One such predictive 

measure was recently developed by Grabovsky and Wainer (2017). This method, originally titled 

the “Cutscore Operating Function” (Grabovsky & Wainer, 2017a and b) and later as “the 

Grabovsky curve” (Wainer, 2017), is henceforth referred to as the GW-CSOF method to avoid 

confusion and to credit both of its original authors. This method estimates the error rate at all 

possible cutscore values, allowing one to estimate the statistically optimal cutscore. In order to 

provide this estimate, however, assumptions about the examinee population are required.  

 One of the key assumptions made by the GW-CSOF method is that examinee true scores 

are normally distributed. While this is a reasonable assumption in certain situations, it is not 
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always a valid approximation. Observed score distributions, which approximate the true score 

distribution to an extent depending on the size of the standard error of measurement, have been 

found to deviate notably from normality. Micceri (1989) found elements of non-normality in 

over 400 large-scale achievement tests. Among the problems found were distributions that were 

multimodal, tail weighted (kurtotic), or asymmetrical (skewed). Any deviation from the 

mathematical assumptions of a statistic can lead to errors in the estimates. To date, there has not 

been an exploration of how non-normality of true scores impacts the GW-CSOF method’s 

estimates. In fact, there has not been an exploration of how the GW-CSOF method aligns with 

actual error values even when true scores are normally distributed. In other words, research has 

yet to answer the following questions: 1) Do GW-CSOF estimates of optimal cutscores match 

the actual location of the optimal cutscore, and does the match change as non-normality 

increases? 2) Do GW-CSOF estimates of error at the true cutscore location match actual error 

rates, and does the match change as non-normality increases? 

These questions are important, as standard setting committees are often tasked with 

making important cutscore decisions, and being able to know how much error a certain cutscore 

might yield could be potent information. In order for such benefits to be realized, however, it is 

necessary to know how correct the method’s estimates are. To answer the above research 

questions, a simulation design was proposed. Via simulation, normality can be systematically 

manipulated, and thus it is possible to determine the impact of increasing non-normality on the 

GW-CSOF method’s estimates. The hypotheses of this dissertation were, I) The GW-CSOF 

method would produce error estimates close to actual error values when the normality 

assumptions of the true score distribution were met, II) Increased non-normality in the true score 

distribution would increase incorrectness in error estimates. For the above two hypotheses, the 
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comparisons were made at the location of the true cutscore, i.e., where the observed cutscore 

matched the value of the location on the true score that separated competent and non-competent 

examinees. In addition to the potential mismatch of error values at the true cutscore, the GW-

CSOF method’s estimated location of the optimal cutscore was also compared against the actual 

location. Thus, research hypothesis III, and IV paralleled I, and II. Hypothesis III) the GW-

CSOF method would estimate a location for the optimal cutscore near the location of the actual 

optimal cutscore when normality assumptions of the true score distribution were met, IV) 

Increased non-normality in the true score distribution would cause increased incorrectness in 

GW-CSOF estimates of the optimal cutscore. 
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Chapter 2: Literature Review 

Systematic Error and Validity 

All measurements in the social and behavioral sciences, including education, are subject 

to measurement error. Classically speaking, measurement error takes two forms: systematic and 

random (Raykov & Marcoulides, 2011). Systematic errors occur when something inherent in a 

test or a testing situation depresses (or inflates) student scores. These sorts of errors are 

consistent: repeated testing would yield the same erroneous results. Systematic errors must be 

eliminated before a test can used (i.e., without eliminating systematic error, a given test is not 

validly assessing what it purports to measure). Random error, on the other hand, is expected to 

balance itself out over repeated testing. Random error is discussed further in this paper, but first 

attention is turned to the notion of what is meant by a valid assessment. 

Validity refers to the appropriate inferences from an individual’s test score. Historically, 

validity has often been discussed in terms of content, criterion, and construct validity (e.g., 

Helmstadter, 1964). Content validity refers to the extent to which a test completely and properly 

assesses the content it is purported to. This content is often referred to as the content domain, and 

a valid test, in terms of content validity, must contain items which span the entire content 

domain, and must allow examinees to respond in a way appropriate for what is being asked. 

Empirical validity, also known as criterion validity, refers to the extent to which a test can be 

shown to relate to the quality being assessed. Empirical validity takes two forms: concurrent and 

predictive (Thorndike, 1997, pg 143).  Concurrent validity refers to the relationship between a 

test and another metric, such as a correlation between a test of mechanical ability and ratings of 

mechanical job performance. Predictive validity refers to a tests ability to predict relevant future 

outcomes, such as aptitude tests being used to predict later student success. Finally, construct 

validity refers to whether an assessment is actually measuring the latent construct that it purports 
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to measure. In the last three decades, consensus around what validity is and how best to 

document it have evolved.  

Messick (1995) described validity as a “unified” concept. Thus, validity evidence, which 

historically were thought of as the above three separate forms of validity, come together to create 

a single pool of validity evidence for score interpretation. No one form of evidence is sufficient 

on its own, nor is any one form absolutely necessary: all that is required is that there is a, 

“compelling argument” that the evidence justifies the test interpretation. All of the evidence is 

thus unified under this argument. 

Messick divided validity into a 2x2 table with four facets: interpretation, use, evidential 

basis and consequential basis. The evidential basis for test interpretation is essentially construct 

validity. The evidential basis of use is construct validity with the addition of some evidence 

supporting the relevance of a test to some use and some evidence from a cost/benefit (utility) 

point of view. The consequential basis of interpretation is also construct validity, but with the 

addition of value implications. Finally, the consequential basis of test use includes construct 

validity, relevance/utility, value implications, and the addition of social consequences – that is, 

what is the social impact of making a decision due to interpretation of a test score. This last 

notion is of particular importance in classification testing. If a license to practice a trade is 

withheld from an individual, that individual will lack job opportunities they might otherwise 

have had, which could have serious consequences on their livelihood. Likewise, if a license to 

practice a trade is given to an individual, then the public should be able to reasonably expect that 

the individual is competent in that trade. The consequences of giving a non-competent person a 

license to practice in such fields as aviation or medicine can be fatal. Thus, consequential 

validity is directly related to classification error. As indicated in the beginning of this section, 
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one piece of validity evidence is a lack of systematic error. Thus far, random error has not been 

discussed in this dissertation, but it too is directly related to classification error, as it is discussed 

in the next section.  

Random Error and Reliability 

In classical test theory, random errors of measurement affect an individual’s score due to 

pure chance effects, and these effects are temporary (Raykov & Marcoulides, 2011). If a test is 

administered repeatedly, it is expected that random measurement error will balance itself out 

(i.e., that its expected value is zero). This error is part of the classical test theory equation, 

X=T+E, where X is a student’s observed score, T is a student’s true score, and E is the error of 

measurement (Lord and Novick, 1968). The standard deviation of this error is known as the 

standard error of measurement, and it is presented in further mathematical form in the next 

section of this dissertation. The degree to which a test produces the same results for the same 

inputs (i.e., same person at same time with the same knowledge and skill) is called test reliability 

(AERA, APA, NCME, 2014). If a test is entirely reliable, then it produces no random error, and 

every time this test is administered to an individual, the resulting score is the true score of that 

individual. When reliability is not perfect, random error is present. The relationship between 

random error, reliability, and true scores is quantified in classical test theory. Specifically, 

reliability is equal to the ratio of true score variance over observed score variance (Lord and 

Novick, 1968). Random errors can lead to incorrect classification decisions whenever a given 

examinee receives an observed score that differs from their true score. Determining the amount 

of error made by a classification test, then, is largely related to that test’s random error 

component. This topic is further explicated in the methods section of this dissertation. First, the 

topic of classification accuracy warrants further attention. 
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Classification Accuracy 

Classification accuracy describes the extent to which classifications have been performed 

correctly. That is to say, that accuracy is the opposite of error: as classification errors go up, the 

accuracy of classification goes down. The topic of accuracy has been important in the literature 

surrounding classification decisions for a long time. The terms: false positive, true positive, false 

negative, and true negative abound in the literature, and have been present in medicine for at 

least the last 100 years (e.g., Solomon, 1920). A false positive occurs when a competent 

examinee is given a failing score. Conversely, a false negative occurs when a non-competent 

examinee is given a passing score. True positives and true negatives occur when competent 

examinees pass, and non-competent examinees fail, respectively. The sum of false positive and 

false negative errors can be termed ‘total classification errors’: as these two classifications 

represent all cases which have been misclassified. This metric is convenient because it 

consolidates error into a single metric. As an example, consider the case where an exam is 

administered to 10,000 students. Suppose that 100 students are incorrectly given passing scores, 

when they should have failed (false positive errors) and that 200 students are incorrectly given 

failing scores when they should have passed (false negative errors). The total error, then, is 300 

of the total 10,000 examinees, which is a total error rate of .03, or 3%.  

One method that can be used to determine a test’s total error rate is to use a ‘gold 

standard’, which is believed to represent the knowable truth about examinee competency status 

(Feuerman, & Miller, 2008). Another method for determining error occurs when the latent value 

measured by a test becomes observable, such as Alzheimer’s disease which can be definitively 

diagnosed post mortem (Dubois et al., 2010). When knowledge of the true state of examinee’s 

classifications is knowable, it becomes possible to calculate false positive and false negative 

errors. These instances are termed ‘actual’ error values in this dissertation. 
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Several authors have expanded on the total error metric. Yerushalmy (1947) first defined 

the now ubiquitous terms: sensitivity and specificity. Sensitivity is defined as the ratio of 

examinees who are correctly classified as competent (true positives) to the total number of 

positive classifications (including both true and false positives). Specificity is the ratio of true 

negatives relative to the total number of examinees who were classified as a negative. Youden 

built upon Yerushalmy’s work by combining sensitivity and specificity into a single metric: 

Youden’s J. This metric is calculated as sensitivity + specificity – 1. Cohen (1960) described 

another metric, known today as Cohen’s kappa, which is used to view overall agreement between 

two classifications. This method takes the additional step of removing an estimate of the chance 

agreement between the two methods. That is, Cohen’s kappa calculates the probability that 

assessment A classifies an examine as competent, as well as the probability that assessment B 

classifies an examinee as competent, and takes their product, assuming rater’s are independent, 

and removes that from the overall rate of agreement. Likewise, chance agreement where both 

assessments A and B agree that an examinee is non-competent are also removed. One of these 

assessments could be operationalized as the gold standard described earlier, and thus Cohen’s 

kappa provides an index of classification error.  

Using a metric such as total error, it is possible to determine the cutscore where error is 

minimized. For example, total error can be calculated at every potential cutscore along a test’s 

scale range. The potential cutscore where the total error is smallest is the location with the least 

error. Such a point is henceforth termed the statistically optimal cutscore. While the statistically 

optimal cutscore is a defensible option for setting a cut-point, standard setting offers an 

alternative. 
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Standard Setting 

Standard setting is the process of establishing levels that separate examinees into 

different performance categories (Cizek, 2012). This process is often operationalized in the 

setting of cutscores, which represent the minimum score on a test necessary for classification in 

the category they represent. The standard setting procedure used to estimate this cutscore often 

involves the use of judges (e.g. Livingston & Zieky, 1989). In licensure testing, there is typically 

a single cutscore, as only two categories (e.g. competent vs. non-competent) are needed. 

Determining the cutscore that best separates examinees who are minimally competent from those 

who are non-competent, then, is the object of standard setting in licensure testing. Standard 

setting can be performed in a variety of ways, and these different methods can be classified into 

one of two categories: test centered and examinee centered (Jaeger, 1989 as cited in Kane, 1994):  

Test centered methods. Test centered methods require judges to make judgments about 

the test content (Cizek, 2012). This often requires judges to review items and decide on the level 

of performance on each item necessary to be considered competent (e.g., Kane, 1994). There are 

several variations of the test centered method. 

Angoff. Angoff’s 1971 chapter on scales (reprinted in 1984) was the first mention of this 

method. In short, the Angoff method utilizes experts to decide the number of items a minimally 

competent examinee (MCE) would be able to answer on a given test. Often, individual judges 

will decide on an ideal cutscore after viewing each test item and rating it as either a 1 or a 0 (or 

they will assign probabilities between 0 and 1). The average of the judges ratings will typically 

be the number established as the optimal cutscore (Hurtz & Auerbach, 2003). There are many 

different modifications to the Angoff method which have been developed over the decades since 

Angoff’s 1971 paper, but all still follow the same general procedure of tasking judges to 

determine probabilities that the MCE could answer questions correctly (Plake & Cizek, 2012). 
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Ebel’s method. Ebel (1972, as cited in Kane, 1994) requires judges to categorize items by 

both difficulty and relevance to the construct being measured. The number of categories for each 

decision need to be decided upon beforehand (e.g., easy, medium, difficult; not relevant, 

somewhat, very). Judges then assign a value to each cell of the resulting difficulty by relevance 

matrix. This value represents the number of items a MCE would get right in that cell. These 

values are then converted to proportions and summed to give each judge’s estimate of the 

cutscore. 

Nedelsky method. The Nedelsky (1956) method is purposed exclusively for multiple-

choice items. Judges examine each item, and eliminate the response options that the MCE would 

be able to determine were incorrect. The reciprocal of the remaining number of choices is the 

probability that the MCE would get that item correct. The sum of all such probabilities over 

items on the test is the MCE’s expected passing score: i.e., the specific judge’s cutscore.  

Bookmark. The bookmark method is an item response theory-based procedure (Lewis, 

Mitzel, Mercado, & Schulz, 2012; Cizek & Bunch, 2007). This method utilizes item difficulties 

calculated during item calibration. Items are rank ordered from easiest to most difficult, and 

content experts are tasked with locating the position in the order where a MCE would have a 

high probability of success (this probability is often operationalized as .67). Once the item has 

been selected, the theta value corresponding to the selected probability and difficulty of the item 

can be calculated.  

Examinee centered methods. These methods ask judges to use knowledge of actual 

students in order to determine the cutscore. 

Borderline-group method. The borderline-groups method (Livingston & Zieky, 1982) 

identifies actual students as ‘borderline’ examinees. This method requires a sample of students to 
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take the exam for which the cutscore is being set. Judges then identify which examinees they 

believe are borderline students, i.e., judges do not use the student’s scores, but rather their 

personal knowledge of the students to categorize them. Then, the average of the scores of the 

students that have been categorized into the borderline category is used as the cutscore.   

Contrasting (Critrion)-groups method. The contrasting-group method (Livingston & 

Zieky, 1982) requires judges to assign a label of ‘qualified’ or ‘not qualified’ to each member of 

a sample of examinees. This assignment is not based on examinee scores, but instead on some 

separate criterion, such as judgments of their knowledge and skill. Once examinees have been 

divided into these groups, student test scores are analyzed using the resulting examinee 

cumulative distribution (using % qualified) to select the cutscore that corresponds to the .5 

proportion of % qualified examinees. In cases where the sample is small, and sparsity of data is 

present, smoothing techniques are used to smooth the cumulative density function (CDF).  

Standard setting techniques are commonly used to establish cutscores on education tests. 

While their presentation thus far in this paper has put them at odds with the statistically optimal 

cutscore, they are not truly opposites. Indeed, methods exist which attempt to utilize both 

statistical and standard setting information in determining the cutscore. Among these methods is 

the primary topic of this paper: the GW-CSOF method. 

The GW-CSOF Method 

Grabovsky and Wainer (2017a & 2017b) described a method for estimating the optimal 

cutscore. The technique was created with the hope of aiding standard setting committees in 

choosing operational cutscores, by providing additional information standard setting committee 

members might not otherwise have had. As a starting point, the method requires the user (e.g., a 

standard setting committee) to specify where they believe the cutscore should be. The authors 
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recommend the standard setting techniques as methods to determine this point, as the point is 

conceptualized as the best guess of the ‘true’ cutscore: i.e., as the point that truly separates 

competent from non-competent examinees. The authors also noted that the location of the 

optimal cutscore may differ from the believed location of the true cutscore. The GW-CSOF 

method estimates classification error at the inputted value of the true cutscore, and also 

determines the accuracy at all other potential cutscores, in order to determine the statistically 

optimal cutscore. Thus, the GW-CSOF method is one which marries the concepts of standard 

setting and statistically optimal cutscores. 

The GW-CSOF method utilizes classical test theory (CTT) conceptualizations of the 

relationship of observed scores and true scores in their mathematical explication, but could also 

be utilized with IRT methods. The CTT theory utilized in Grabovsky and Wainer (2017a) 

includes the properties of expected values of observed scores (being equal to true scores), which 

follow from the classic T= X - E assumption where the expected value of E is zero. The resulting 

derivations are also utilized: 𝜌 = 𝜎𝑡
2/𝜎𝑥

2, and 𝜎𝑥
2 = 𝜎𝑇

2 + 𝜎𝐸
2. Thus, 𝜎𝐸

2 = 𝜎𝑥
2 − 𝜎𝑥

2 ∗ 𝜌, and it 

follows that, 𝜎𝐸
2 = 𝜎𝑥

2(1 − 𝜌). Where 𝜌 is the test reliability, 𝜎𝑡
2 is true score variance, 𝜎𝑥

2 is 

observed score variance, and 𝜎𝐸
2is error variance, which is often termed the standard error of 

measurement (SEM; e.g., Harvill, 1991). Thus, error variance and true score variance can both 

be estimated using knowledge of reliability and observed score variance. It is also true that 

knowledge of true score variance and reliability leads to knowledge of standard error and 

observed score variance. The latter point is important for the methods developed in this study. 

The GW-CSOF method is not the only predictive error measure, nor the first; other 

methods are described in the literature. Livingston (1993) described a method for estimating 

error that was found to be very close to actual values. Lee (2010) explicated a method that could 
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be used for such estimation with complicated item-response theory based assessments. Rudner 

(2001) described another model for estimating accuracy, but also went on to demonstrate how 

accuracy estimates change if the cutscore is altered. The GW-CSOF method incorporates this last 

idea, of looking at error at different possible points of the cutscore, into its mathematical model. 

GW-CSOF was the first method of predictive error estimation designed to identify the predicted 

error across all possible cutscores, allowing for the user to find the optimal error point.  

 In the GW-CSOF method, individual student ability, as indexed by true scores, is 

assumed to be normally distributed. The distribution can be estimated using error variance as the 

variance around a given examinee’s true score.   

 The probability that a given examinee with observed score, x, and true score, τ, will 

obtain a score below a given cut point, c, using standard properties of a normally distributed 

variable, is: 

 𝑝(𝑥 < 𝑐) =  p (
𝑥−τ

𝜎𝐸
<

𝑐−τ

𝜎𝐸
) = p ( z <

𝑐−τ

𝜎𝐸
)  = 

∫
1

√2𝜋
exp (−

𝑦

2
) 𝑑𝑦

𝑐−τ

𝜎𝐸
2

−∞

 

 

 

(1) 

Where z is a standard normal random variable. This follows from the fact that, for a given 

examinee, τ is the expected value of their observed score, and that individual’s error variance 

(the variance between around the mean of their observed score) is estimatable by 𝜎𝐸
2 (see Harvill, 

1991).  

The probability that an examinee will pass a given tests, then, is: 1 −  𝑝(𝑥 < 𝑐) 

If a student is selected at random from the true score population, the probability that the 

student will have τ less than the true cutscore, τ*, and pass the exam (i.e., a false positive error), 

is: 
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𝑝(FP) = ∫ [1 − 𝑝(𝑥 < 𝑐)] 

𝜏∗

−∞

1

√2𝜋𝜎𝑡
2

exp (−
𝜏 − �̅�

2𝜎𝑡
2 ) 𝑑𝜏 

 

(2) 

 

And the probability of a false negative error (i.e., that an examinee will have τ greater than the 

true cutscore and fail the exam) is:  

 
𝑝(FN) = ∫  𝑝(𝑥 < 𝑐) 

∞

𝜏∗

1

√2𝜋𝜎𝑡
2

exp (−
𝜏 − �̅�

2𝜎𝑡
2 ) 𝑑𝜏 

(3) 

Both p(FN) and p(FP) assume that the examinee true score distribution is normal, as 

indicated in their respective integrands. Deviation from this assumption may lead to incorrect 

estimates of classification accuracy. 

True score distributions are rarely known in practice, and assumptions about their form 

may lead to incorrect results. This dissertation investigated the degree to which deviation from 

normality of the true score distribution impacts the correctness of the GW-CSOF method’s 

estimates. This was accomplished via a simulation design in which a given simulated examinee’s 

true score is known, as is their observed score, and the true cutscore is specified. Thus, actual 

accuracy is readily computable. The simulations varied the degree of non-normality, and the 

extent to which these deviations impact the GW-CSOF method’s estimates, as compared to 

actual error values, was determined This research was important as the GW-CSOF method can 

provide valuable information to standard setting committees in their work to choose cutscores. 

However, it was crucial to know the extent to which violations to the method’s assumptions 

might lead to incorrect estimates.  
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Summary 

This review of the literature has expounded on the variables of interest of this 

dissertation. Most importantly, the GW-CSOF method is a recently conceived method for 

estimating optimal cutscores prior to test administration. GW-CSOF holds great potential utility 

as another source of information for standard setting committees, and serves as a method to 

integrate both standard setting and optimal cutscore methods of setting cutscores. However, the 

extent to which the GW-CSOF method matches actual error values remains unknown. In terms 

of application, misestimation of error and optimal cutscore location could have substantial 

impacts on standard setting. For example, in a situation in which GW-CSOF indicates an 

incorrect location for the optimal cutscore, the standard setting committee could very well end up 

choosing a point which differs from their theoretical cutscore, only to arrive at a point, which in 

reality, has even more error than if they had not altered the cutscore location at all. Reasons such 

as this were the motivation of this dissertation. It was hypothesized that GW-CSOF error would 

match actual error values when normality assumptions were not met, and that increased non-

normality would lead to increased mismatch. Thus, one area of focus was on comparing GW-

CSOF to actual error values in a truly normal simulation. Additionally, systematically increased 

non-normality was utilized to determine how GW-CSOF estimates matched actual error values 

under different normality manipulations. Normality manipulations were conducted to create 

skewed, bimodal, and kurtotic distributions. The overall purpose of the present dissertation was 

to explore the degree to which the GW-CSOF method corresponds to actual classification error 

rates under varying degrees of non-normality of the true score distribution. A simulation design 

was chosen to allow for a proper exploration of these unknowns.  
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Chapter 3: Methods 

The present dissertation sought to test the extent to which GW-CSOF estimates of error 

and optimal cutscore location match actual error rates and the actual optimal cutscore location. 

This work was important, as the GW-CSOF can potentially be used by standard setting panels as 

an additional source of information. Its use could then potentially lead a panel to choose a 

different cutscore than they might have otherwise. Cutscores are utilized in assessment (e.g., 

education, medicine) to make diagnostic decisions, such as whether a student is qualified or not, 

or whether a disease is present or not. Thus, use of the GW-CSOF has the potential to impact one 

of the most important decisions in assessment planning. Ideally, the GW-CSOF will provide 

useful information to standard setting panels, guiding them in choosing a cutscore which 

minimizes the rate of misclassifications: thus, reducing the number of examinees mishandled by 

the assessment process. In order to maximize the utility of the GW-CSOF, however, it is 

necessary to determine under which circumstances its estimates are valid. This was the focus of 

the current dissertation. This section explicates the methodology used to systematically 

manipulate non-normality of the true score distribution (i.e., the distribution of examinee’s true 

abilities), in order to determine how such manipulations alter the correctness of the GW-CSOF 

estimates. 

In order to investigate the research hypotheses, it was necessary to have knowledge of the 

true score distribution’s shape as well as knowledge of the resulting properties of the observed 

score sample resulting from that true score distribution. A simulation design, in which the true 

score distribution was specified and used to generate true score observations, which were in turn 

used to generate observed score observations, provided a suitable basis for this research.  
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Simulations 

 This dissertation used Monte Carlo methods to simulate examinee test scores. A true 

score distribution was specified, as well as a true cutscore and test reliability. Using the 

specifications of the true score distribution, a sample of 10,000 true scores was generated. Using 

the true score simulations and test reliability, an observed score was simulated for each 

examinee, resulting in a simulated observed score sample. This observed score sample was used 

to calculate actual classification error: that is, each simulated examinee had a known true score 

and a known observed score, making for direct comparison. Four separate true cutscores were 

used in order to determine the differing effects of a true cutscore which was: i) extremely below 

the mean, ii) below the mean, iii) above the mean, or iv) extremely above the mean.  

The mean of the true score distribution was fixed at 50 with a standard deviation 5. These 

values were chosen because they provided for a good fit to a 0 to 100 scale, which is a common 

scale in education (see Scale section below for more details on the scale). True cutscores were 

set at 45, 47.5, 52.5, and 55, in four separate analyses. These correspond to -1, -.5, +.5, and +1 

standard deviations below and above the mean, respectively, representing the results when the 

cutscore is set near the mean, as well as when it set a considerable distance away, in either 

direction. This produced four different conditions that had straightforward connotations: a very 

easy test, where about 84% of students should pass, a somewhat easy test, where about 69% of 

students should pass, a somewhat hard test where about 31% of students should pass, and a very 

hard test where only about 16% of students should pass. A reliability of .8 is generally 

considered satisfactory in applied research (e.g., Raykov & Marcoulides, 2011), and this value 

was used in the simulations. From CTT we have that 𝜌 = 𝜎𝑡
2/𝜎𝑥

2, and, 𝜎𝐸
2 = 𝜎𝑥

2 − 𝜎𝑡
2. Thus,  

𝜎𝐸
2 =

𝜎𝑡
2

𝜌
− 𝜎𝑡

2 
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Where 𝜌 is the test reliability, 𝜎𝑡
2 is true score variance, 𝜎𝑥

2 is observed score variance, 

and 𝜎𝐸
2is error variance, which is often termed the standard error of measurement (SEM; e.g., 

Harvill, 1991). It follows that, using knowledge of the true score variance and reliability we were 

able to calculate error variance, 

 
𝜎𝐸

2 = 𝜎𝑇
2 (

1

𝜌
− 1) 

(4) 

 

Thus, SEM was calculable using the known values of true score variance and reliability. 

Although the simulated true score sample variance differed slightly from the true score 

distribution variance, the differences were slight due to the large sample size (see Simulation 

Quality in Results section). Thus, the error variance that was used for all calculations was 

25(1/.8 − 1) = 6.25, and SEM was √6.25 = 2.5. 

The observed score sample was generated from the true score sample by use of the SEM. 

The SEM describes the standard deviation around a given examinee’s true score (the mean of 

their observed scores), and this distribution was assumed to be normal. For each simulated 

examinee, then, their observed score is simply a random variable to be sampled from their 

individual observed score distribution, which was completely specified by their true score 

simulated value and the SEM. That is, using SEM and a given examinee’s true score value, a 

random draw from a normal observed score distribution (~N(true score, SEM)) could be taken, 

which resulted in their simulated observed score.  

Actual classification error was compared to estimates produced by the GW-CSOF 

method. Using the true cutscore, the reliability of the test, and the true score mean, the GW-

CSOF method estimated the error for each possible value of the cutscore, and indicated the 
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location of the optimal cutscore. This method was compared directly with the actual error and 

actual optimal cutscore location.  

Scale 

While all of the simulation criteria were specifiable without need for a specific scale 

range, the GW-CSOF method requires a scale over which to search for the optimal cutscore. The 

scale range that was used in this study ranged from 0 to 100. This range fits nicely with the 

proposed true score distribution, and the probability of any score falling above 100 or below zero 

is infinitesimal. That is, the expected observed score standard deviation is √
𝜎𝑇

2

𝜌
= √

25

.8
= 5.59 

Thus, 99% of the sample in a truly normal case was within three standard deviations of 50, 

(33.23,66.77).  

Normality Manipulations 

Generally speaking, distributions need not be normal. Indeed, the normal distribution is 

but one of many continuous distributions one would find in an introductory text on mathematical 

statistics (e.g., Hogg, Tanis and Zimmerman, 2015).  When determining whether or not a sample 

appears to have come from a normal distribution, introductory texts commonly present several 

criteria to look for. These criteria often include indices of skewness and kurtosis (e.g., Coladarci 

& Cobb, 2014) and multimodality (e.g., Glassnap & Poggio, 1985). All three of these criteria 

were observed by Micceri’s (1989) research on violations to normality of observed score 

distributions. These three exceptions to normality were systematically manipulated in the present 

dissertation. Specifically, normality was increasingly distorted over the course of 50 simulations 

within each of the three conditions. A sample of 100 has been shown to be a sufficiently large 

sample to detect even small effects using Spearman’s rho (Yue, Pilon, & Cavadias, 2002). 
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However, following the recommendation of the dissertation committee, this dissertation created 

50 simulations per condition.  

For example, in the skewness condition, each of the 50 simulations had increasingly more 

skewness. The total error (FP+FN) at the true cutscore was tabulated and compared between the 

GW-CSOF method and the simulated results, and the estimated optimal error location was 

compared to the actual location. 

True Normal Distribution 

A single truly normal distribution was simulated. This provided an opportunity to test the 

effectiveness of the GW-CSOF method against actual classification error rates, something not 

performed in the published GW-CSOF literature. This also provided a baseline for the rest of the 

comparisons, as all other simulations were intentionally violating the normality assumptions and 

thus, compared to the truely normal distribution, were expected to produce worse matches 

between GW-CSOF estimates and actual errors.  

This manipulation was conducted to confirm or refute Research Hypotheses 1 and 2: The 

GW-CSOF method would produce error estimates close to actual error values when the 

normality assumptions of the true score distribution were met, and the GW-CSOF method would 

estimate a location for the optimal cutscore near the location of the actual optimal cutscore when 

normality assumptions of the true score distribution were met.  

Skewness 

Skewness values for normally distributed random variables generally range from ±3, with 

0 indicating a symmetric distribution (Glassnap and Poggio, 1985). As an example of a skewed 

distribution, consider the case where most examinees do very well on an exam (scoring near the 
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maximum of the possible range), but a handful of students perform poorly (scoring near the 

minimum of the possible range). Such a distribution would be negatively skewed.  

In order to generate a skewed examinee sample, it is necessary to sample from a 

distribution with a known skewness value. The exponentially modified normal distribution (e.g., 

Zabell, Foxworthy, Eaton, and Julian, 2014) describes the sum of two random variables, one 

from a normal distribution and the other from an exponential distribution. The resulting 

distribution has, as a function of 𝜆 (introduced below), a normal density except for a positive 

skew. 

Let S be a random variable, S is defined: 𝑆 = 𝑋 + 𝑌 

Let X be a normally distributed variable with variance 𝜎2 and mean µ, and Y be exponentially 

distributed with mean 
1

𝜆
, with X and Y independent. As we transform from X,Y coordinates to S, 

Y coordinates, the resulting joint distribution, f(s,y), of S and Y, given by the transformation 

formula (Hogg, Mckean, & Craig, 2014) with Jacobian J=1 is: 

 
𝑓(s, y) =

1

√2𝜋𝜎2
exp (−

𝑠 − 𝑦 − µ

2𝜎2
) λ exp(−𝜆𝑦) ∗ 1 

 

(5) 

Marginalizing over this joint pdf with respect to y produces the marginal pdf of S, f(s):  

 

 
𝑓(s) = ∫

1

√2𝜋𝜎2
exp (−

𝑠 − 𝑥 − µ

2𝜎2
) λ exp(−𝜆𝑦) 𝑑𝑦

𝑠

0

 
(6) 

 

Via independence, the mean is simply the sum of the means, and the variance is simply the sum 

of the variances. The skewness, as presented in Grushka (1972), is 
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 2𝜃3

(𝜎2 + 𝜃2)3/2
 

(7) 

Where 𝜃 =
1

λ
 

Thus, the mean, variance, and skewness of the simulated examinee distributions could be 

specified. For consistency, skewness was increased while the mean and variance was held 

constant, via manipulation of the three input parameters (i.e., 𝜎2, µ, and 𝜆). See Appendix A for 

derivation of the formulas used for this purpose. While the resulting simulated examinee data 

was slightly different than the distributions used to generate it, the size (10,000) yielded numbers 

that match very closely with the intended outcomes. The skewness of the exponentially modified 

normal distribution ranges from 0 to +2, and it is over this interval that the 50 simulations were 

conducted. Specifically, in order to have 50 total simulations of increasing skewness, [0, 2), steps 

of .04 were taken. The first simulation used skewness of 0, and the last used skewness of 1.96. 

The skewness manipulations were conducted to confirm or refute Research Hypotheses II 

and IV: Increased non-normality in the true score distribution would cause increased 

incorrectness in error estimates, and increased non-normality in the true score distribution would 

cause increased incorrectness in GW-CSOF estimates of the optimal cutscore. Specifically, as 

skewness increased, density at the 45, 47.5, and 52.5 locations was expected to decrease. It was 

expected that the relative decrease in density near these points would lead to shifts in error 

estimates, as well as optimal cutscores. Because the skewness is increasing near the 55 location, 

there was no clear expectation about how error might change at that point. 

Bimodality 

A normal distribution has a single mode. The extent to which two modes are present is 

the extent to which a distribution can be termed ‘bimodal’. As an example of a bimodal 
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distribution, consider the case when examinee samples are drawn from different countries, i.e., 

such as an exam that was developed for use in the United States, such as a US college entrance 

exam, where many students from the US as well as from other countries participate in the 

examination. It may well be the case that US and non-US test takers differ in terms of their 

average test score. It may also be that both groups exhibit a relatively normal distribution about 

their respective means. In such a testing situation, if the separation of the two groups’ modes is 

sufficiently large, the overall examinee distribution will be bimodal.  

Bimodality was generated using a mixture distribution of two normals. In general, a 

mixture of two distributions is composed of their respective pdfs and a mixing probability 

(Hogg, Mckean, & Craig, 2014). Let Z be a mixture, and X and Y two independent random 

variables with their own distributions, with mixing probability w. Let I be an indicator function 

with I=1 with probability w, and I=0 with probability 1-w, then: 

 𝑍 = 𝐼𝑋 + (1 − 𝐼)𝑌 (8) 

 And,  

𝑓(z) = w𝑓(x) + (1 − 𝑤)𝑓(y) 

 

 

(9) 

Mixtures of normals can be used to generate bimodal distributions (Rossi, 2014). This is 

accomplished by sampling from normals with different means. In the case where both 

distributions have the same mean and same variance, a single normal distribution is present, and 

thus there is no bimodality.  

The mean of a mixture, µm, of normals is given by Behboodian (1969) as 

 

 µ𝑚 = 𝑤µ1 + (𝑤 − 1)µ2 (10) 
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Where µ1 and µ2are the means of X and Y, respectively. 

The variance, 𝜎𝑚
2 , is  

 𝜎𝑚
2 = 𝑤(𝜎1

2 + µ1
2) + 𝑤(𝜎2

2 + µ2
2) − µ𝑚

2 (11) 

Let 𝜎1
2 = 𝜎2

2, so that both normals have the same variance. This also makes solving for 

the distance between modes algebraically possible; see Appendix B for derivation. Bimodal 

simulations were carried out using 50 successively more bimodal distributions. Following the 

definition used by Micceri (1989), a distribution where two modes were present and the modes 

had, “distances greater than two thirds (.667) of a distribution’s standard deviation were defined 

as bimodal.”  

Here, the standard deviation and mean of the resulting mixture was held constant via 

manipulations of the input normals, maintaining the mixture mean of 50 and standard deviation 

of 5. A weight of .5 was used for w, resulting in equal probabilities that a given draw came from 

either of the two normal distributions. Let D be the distance between two means from two 

normal distributions, as specified above. It can be shown that the maximum distance D, while 

holding mixture variance and mean constant, as well as the variance of the two input normals 

equal, is strictly less than two times the standard deviation of the mixture standard deviation. 

That is, the input normals would each have to have variance of zero to produce the desired 

mixture variance of a D. In the current case, this means that D had to be strictly less than 10. 

Thus, the stopping condition was set at a distance of means up to but not including D=10. This 

point was just below two times the standard deviation of 5, and thus certainly met the criteria set 

forth in Micceri. In order to have 50 iterations of increasing bimodality between 0 and 10, steps 

of .2 was taken.  
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The bimodal manipulations were conducted to confirm or refute Research Hypotheses II 

and IV: Increased non-normality in the true score distribution would cause increased 

incorrectness in error estimates, and increased non-normality in the true score distribution would 

cause increased incorrectness in GW-CSOF estimates of the optimal cutscore. Specifically, as 

bimodality increased, density near the middle of the distribution was expected to move toward 

zero. Due to this decrease in density, shifts were expected in error estimates and optimal 

cutscores for the 47.5 and 52.5 true cutscores, as they were located near these shifting densities. 

Meanwhile, error was expected to increase for cutscores further out (at 45 and 55).  

Kurtosis 

Normal distributions typically have a kurtosis value of 3, with values less than 3 

indicating a platykurtic distribution, and values above 3 indicating a leptokurtic distribution 

(Glassnap and Poggio, 1985). As an applied example of a kurtotic distribution, consider again 

the case where there is a US college entrance exam taken by both US students and non-US 

students. It is possible that both US and non-US students, on average, perform the same. That is, 

that the means of each group might have the same location. However, it also possible that the 

variability (i.e., the variance) around the mean of the non-US group might be larger than that 

around the US group. Should this prove to be the case, then the overall testing sample may take 

on positive kurtosis.   

The mixture of two normals, each with the same mean, but different variances, produces 

a normal distribution with excess kurtosis (An and Ahmed, 2008). A mixture of two normals, as 

defined earlier in the bimodal section, is composed of two normal distributions and the 

probabilities of drawing from each of the two distributions. The mean and variance are given in 

the bimodal section. 



27 
 

The Kurtosis of the mixture is equal to 

 3(𝑤1𝜎1
4 + 𝑤2𝜎2

4)

(𝑤1𝜎1
2 + 𝑤2𝜎2

2)2
 

(12) 

The kurtosis is maximized when 𝑤1 = 𝜎2
2/(𝜎1

2 + 𝜎2)
2  and 𝑤2 = 𝜎1

2/(𝜎1
2 + 𝜎2

2) , which results in 

a maximum value of 

 3

4
(

𝜎1
2

𝜎2
2 +

𝜎2
2

𝜎1
2 + 2) 

(13) 

The kurtosis of the mixture of normal distributions ranges from 3 to 6. It is over this range that 

kurtosis was manipulated. Specifically, in order to have 50 total simulations of increasing 

kurtosis [3,6), steps of .06 was taken. The first simulation used kurtosis of 3, and the last used 

kurtosis of 5.94. 

The kurtosis manipulations were conducted to confirm or refute Research Hypotheses II 

and IV: Increased non-normality in the true score distribution would cause increased 

incorrectness in error estimates, and increased non-normality in the true score distribution would 

cause increased incorrectness in GW-CSOF estimates of the optimal cutscore. Specifically, as 

kurtosis increased, density near the center of the distribution was expected to increase, while 

density further out was expected to decrease. Thus, it was expected that overall error would 

increase near the center, affecting the 47.5 and 52.5 conditions, and that error would shrink for 

the 45 and 55 conditions.  

Software and Hardware 

R software (R Core team, 2017) was used to generate the specified distributions. For the 

two mixture distributions, sampling was coerced to contain exactly 50% of each component of 

the mixture. This corresponds to the expected proportions (i.e., the average number of simulated 

values from each distribution if many simulations were generated using random Bernoulli 
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variables for each draw from a mixture), and allows for a more consistent true score distribution. 

For the convolution (skewness), two samples, one normal and one exponential, each of 10,000 

cases, was simulated separately, and then summed along their index of creation. The GW-CSOF 

algorithm (equations 1, 2 and 3) was coded into R. The integrals were solved using R’s built-in 

numeric integration functions, and steps of .1 of possible cutscores were taken between 0 and 

100 (the possible score range) to determine the optimal cutscore. The code for the GW-CSOF, 

and the code for the skewness, bimodal, and kurtosis manipulations, when the true score was set 

to 45, are contained in appendix H. If the reader is interested in generating the 47.5, 52.5, or 55 

conditions, universal replacement of values of 45 in the corresponding code will suffice to 

produce the intended result. 

Hardware used for the simulations was a PC with an 8th generation Intel Core i-5 1.6 GHz 

quad-core processor, 8GB of ram, with an NVIDIA GeForce MX150 graphics processor, 

running Windows 10 for its operating system. 

Points of Comparison 

 Each iteration of the non-normal simulations created two points of comparison between 

the GW-CSOF method and the actual error rates: the error rate at the true cutscore, and the 

location of the optimal cutscore. As non-normality increased, whether by increasing skewness, 

bimodality, or kurtosis, it was expected that the differences between GW-CSOF estimates and 

actual error values would increase. To test this assumption, a correlation between the difference 

in total error and the magnitude of non-normality was calculated. The correlation between the 

magnitude of non-normality and distance between the actual and estimated optimal cutscore was 

also be calculated.  Spearman’s rho (e.g., Hays, 1973, pg. 788) was chosen to calculate 

correlation. This technique is a non-parametric procedure, and is distributed asymptotically 
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normal (Ornstein & Lyhagen, 2016). There was no reason to expect that the distribution the 

increase in non-normality (on any of the three metrics) would follow any particular distribution, 

except that it was ordinal. The same was true of the differences between the actual and estimated 

error values. Thus, the proposed non-parametric procedure was used. When ties occurred, 

average rank was assigned to each member of the tie, as indicated in Hays, 1973, pg. 791. An 

alpha level of .01 was used in order to be conservative about conclusions of significant 

relationships. This is particularly important when using Spearman’s rho with tie correction, as 

the significance levels are not determined exactly in the presence of ties, and thus it is helpful to 

err on the side of caution in interpreting resulting statistical significance. 

These analyses will provide an indication of whether the incorrectness of the GW-CSOF 

method is related to the degree of non-normality.  

Summary 

This chapter has presented the methodology that was used in this dissertation. This 

dissertation used a simulation design to generate true scores from specified distributions with 

known characteristics, including non-normality. These simulated true score samples were then 

used to generate observed score samples which were used to calculate actual error values. This 

design determined the degree to which the GW-CSOF method’s estimates matched actual error 

values in cases where true scores are normally distributed, as well as when true scores were non-

normal. 
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Chapter 4: Results 

The present dissertation sought to investigate the correctness of the GW-CSOF under 

manipulations of normality of the examinee true score distribution. The GW-CSOF is a method 

for predicting classification error, and estimating the location of the optimal cutscore (i.e., where 

error is minimized). The GW-CSOF has potential utility for standard setting panels, enabling 

them to select cutscores which minimizes the number of misclassified examinees, as well as 

providing information about error at other potential cutscores. The present dissertation has 

sought to provide additional information for standard setting panels, particularly about how the 

GW-CSOF performs when its model assumptions are violated.  

Based on the methodology proposed, there were 50 simulations per condition (i.e., 

skewness, bimodality, and kurtosis), and four subsets of simulation trials (for four different true 

cutscores), resulting in 600 total simulations. For all conditions, the 1st simulation was a truly 

normal simulation, and each subsequent simulation had increased non-normality. Comparisons 

were made between the GW-CSOF estimates of error at the true cutscore, as well as comparisons 

of the optimal error location.  

Let ∆L be the difference in optimal cutscore location, and let ∆T be the difference in 

error rates when the observed cutscore is set equal to the true cutscore. Let ∆N be the change in 

non-normality in a given simulation. The proceeding results are divided into a section on the 

relationship between ∆L and ∆N, and a section on the relationship between ∆T and ∆N.  

Simulation Quality 

As can be seen in Appendix D, the simulation results matched closely with desired 

values. For both the skewness and kurtosis manipulations, simulated true score sample values 

matched almost exactly with the desired distribution values, and the relationship between 
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increased distributional non-normality and simulated true score non-normality was almost 

monotonic.  

The results of bimodal simulations were more complicated. Visual inspection of the 50 

true score histograms was necessary to determine when bimodality became present. This 

inspection revealed that a truly bimodal distribution did not develop until the gap in the mixture 

means was greater than or equal to seven. Twenty images, beginning from a distribution mean 

gap of six, to the end of the simulations (gap of 9.8) are presented in Appendix F. As can be 

seen, true bimodality did not present until F21. Because bimodality did not present until the final 

15 simulations, only those simulations were used to determine the relationship between 

increasing bimodality and the correctness of the GW-CSOF estimates.  

Truly Normal Case 

∆L results. The top row of Appendices Appendix E, F and G all contain the same 

information: the results from a truly normal simulation. As can be seen by comparing Tables E1 

and E3, the GW-CSOF estimates of the optimal cutscore were nearly identical to the actual 

values: 43.6 vs. 43.7 for true cutscore of 45, 46.8 vs. 46.8 for true cutscore of 47.5, 53.1 vs. 53 

for true cutscore of 52.5, and 56.2 vs. 56.8 for true cutscore of 55.  

∆T results. By comparing Tables E2 and E4, it can be seen that, when the observed 

cutscore was set to be equal to the true cutscore, GW-CSOF estimates of error were nearly 

identical to actual values. Total error estimates vs. actual values were, for the 45, 47.5, 52.5, and 

55 conditions, respectively: 0.095 vs. 0.088, 0.131 vs 0.134, 0.134 vs 0.131, and 0.099 vs 0.098. 

Thus, fewer than 1 in every 100 examinees would be classified differently between the GW-

CSOF estimates and the actual values. 

Skewness 
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Table 1: Skewness Results: Correlations Between ∆N, ∆L, and ∆T 

True Cut Location Optimum Cutscore Location Error Rate at True Cutscore 

 Spearman's Rho p Spearman's Rho p 

45 0.87 <.001 0.97 <.001 

47.5 0.58 <.001 0.98 <.001 

52.5 0.58 <.001 0.93 <.001 

55 -0.25 0.078 0.97 <.001 
 

  

 

∆L results. Table 1 reports the correlations between ∆N, ∆L. As can be seen, the 

correlation was significant at an alpha level of .01 for all but the 55 condition. 

Cutscore at 45. As can be seen in table 1, there was a large correlation (.87) between ∆N 

and ∆L when the truecut score was set to 45.  

As can be seen in Table E1 in Appendix E, the position chosen for the optimal error 

tended to the left as the skewness increased. This appeared to be due to the relative decrease in 

density to the left of the mean, as the skew pooled more and more examinees to the right. Thus, 

the probability of a false negative error (i.e., a student having a true score above 45, but an 

observed score below a certain cut) was relatively low just to the left of 45. By setting the 

observed cutscore to the left of 45, the optimal error location took advantage of a large decrease 

in FN for a modest increase in FP.  

As can be seen by comparing Tables E1 and E2, i.e., comparing optimal error location 

with error at the (higher) observed cutscore location when set equal to the true cutscore location, 

by setting the cutscore to 43.6, the optimal point (rather than 45), in the first iteration, FP error 

was increased, while FN error was decreased. However, the relative decrease in FN outweighed 

the relative increase in FP. That is, as the observed cutscore was set more and more to the left of 

the true cutscore, FP increased, as there was an increased likelihood of a given examinee having 

a true score below the true cutscore, yet receiving an observed score above observed the 

cutscore.  
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As can be seen in Appendix E2, FN error at a fixed observed cutscore generally increased 

as the skew to the right increased. Thus, there were more and more candidates who have true 

scores above the true cutscore and thus there were more and more candidates that could 

potentially have been FN. 

While the examinees in the extreme skew to the right should theoretically reduce the FN 

rate, they did not do so in this situation (with a true cutscore of 45). This was because those 

examinees with scores in the far right tail were already so beyond the true cutscore that the 

probability any of them would have been a FN, even in the truly normal case, was infinitesimal.  

Cutscore at 47.5. As can be seen in Table 1, there was a moderate correlation (.58) 

between ∆N and ∆L when the true cutscore was set to 47.5.  

Similar to the 45 condition, in the beginning, the optimal cutscore was set just to the left 

of the true cutscore, taking advantage of a large decrease in FN for a modest increase in FP. As 

the skew to the right increases, however, the actual optimal location moved right, eventually 

moving to the right of the true cutscore in the most skewed simulations. Thus, the actual optimal 

cutscore moved in the same direction of the skew.  

As can be seen in Figures E1 – E9, the location of the distribution mode moved left as the 

skew increased to the right. This occurred because the specified distribution maintained a mean 

of 50, requiring density to the left of that mean to balance out the skew in the extreme right tail. 

The true cutscore location of 47.5 became effectively in the middle of a normal distribution, as 

the individuals in the right skew were too far away to have any noticeable probability of being 

misclassified, and the left tail remained normal. Thus, at the true cutscore, FP and FN rates 

approached each other as the skew increased. The optimal error location reflected this trend, as 

the rates of FP and FN were practically equal in the last few iterations of the simulations. In 
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other words, the rates of FP and FN were so close to equal around the true cutscore that moving 

in either direction increased one error rate at least as quickly as it reduced the other, resulting in 

an optimal point that was effectively at the true cutscore.  

Cutscore at 52.5. There was a moderate correlation (.58) between ∆N and ∆L when the 

true cutscore was set to 52.5. The optimal cutscore for the initial simulation is just to the left of 

the true cutscore, at 53, taking advantage of a slight increase of FN for a larger decrease in FP. 

As the skew increases, the optimal cutscore generally moves further to the right, although it 

never moves far beyond 54.  

Cutscore at 55. There was no significant correlation between ∆N and ∆L for the 55 

condition. Thus, increased skewness did not predict differences between GW-CSOF estimates of 

the optimal cutscore, and actual optimal cutscore. As can be seen in Table E1, the location of the 

optimal error remained relatively constant, and is very similar to the GW-CSOF estimated 

location, as can be seen in Table E3.  

∆T results. As can be seen in Table 1, there was a large significant correlation between 

the correctness of the GW-CSOF method at the true cutscore and ∆N for all four conditions.  

As can be seen by comparing Tables E1 and E2, for the 52.5 and 55 conditions, as the 

skew to the right increases, fewer and fewer errors were actually made at a fixed point. The 

reverse was found for the 45 and 47.5 conditions, in which the error increased at a fixed point as 

the skew increased to the right. Thus, in the present manipulations, when the true cutscore was 

on the opposite side of the skew, error increased at a fixed point, and decreased at a fixed point 

when the true cutscore was on the same side as the skew. As can be seen by comparing Tables 

E2 and E4, the GW-CSOF underestimated error when the observed cutscore was set equal to a 

true cutscore on the opposite side of the skew, and overestimated error when the true cutscore 



35 
 

was on the same side as the skew. Furthermore, the degree of the over or underestimation was 

significantly predicted by the degree of skewness in the true score distribution. 

Bimodal 

Table 2: Bimodal Results (n=15 between D=7 and D=10) Correlations Between ∆N, ∆L, and ∆T 

 Optimum Cutscore Location Error Rate at True Cutscore 

True Cut Location Spearman's Rho p Spearman's Rho p 

45 0.59 0.021 0.87 <.001 

47.5 0.86 <.001 0.75 0.001 

52.5 0.85 <.001 0.8 <.001 

55 0.43 0.106 0.93 <.001 

It was expected that the difference between GW-CSOF estimates and actual estimates 

would be roughly similar at the 45 and 55 condition, as the distribution should be approximately 

mirrored over the x axis. However, the results in Table 2 did not match this expectation. It seems 

likely that the small sample (15) may have led to anomalous results. Because of this, a second set 

of simulations was conducted which extended the number of simulations to 50 between D=7 and 

D=10, where D was the separation of mixture means. Table 3 presents these results. 

Table 3: Bimodal Results (n=50 between D=7 and D=10) Correlations Between ∆N, ∆L, and ∆T 

 Optimum Cutscore Location Error Rate at True Cutscore 

True Cut Location Spearman's Rho p Spearman's Rho p 

45 0.4 0.004 0.88 <.001 

47.5 0.86 <.001 0.83 <.001 

52.5 0.87 <.001 0.87 <.001 

55 0.5 <.001 0.9 <.001 

 

∆L results. The results indicated that there was a significant correlation between ∆N and 

∆L for all conditions. 

Cutscore at 45. As can be seen in Table 3, there was a significant moderate correlation 

between ∆N and ∆L. As can seen by comparing tables F1 and F2, the optimal cutscore began to 

the left of the true cutscore (44), but moved up and nearer to the cutscore as the degree of 
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bimodality increased, ending at 45 in the most extremely bimodal case (with true score D of 

10.2).  

Cutscore at 47.5. As can be seen in Table 3, there was a significant large correlation 

between ∆N and ∆L. Similar to the 45 condition, the optimal cutscore moved right as the degree 

of bimodality increased. In this instance, however, the optimal cutscore began near the true 

cutscore (47.4) and reached a maximum of 51.1.  

Cutscore of 52.5. As can be seen in Table 3, there was a significant large correlation 

between ∆N and ∆L. As can be seen in Table F1, the optimal error began to the right of the true 

cutscore (53.3) and moved right as the bimodality increases, ending at a minimum of 49.7. Note, 

these results were roughly parallel to the 47.5 results, but in the opposite direction. 

 Cutscore of 55. As can be seen in Table 3, there was a significant moderate correlation 

between ∆N and ∆L. As can seen in Table F2, the optimal cutscore began to the right of the true 

cutscore (56.2), but generally moved down and nearer to the true cutscore as the degree of 

bimodality increased, reaching a minimum of 44.6. Note, these results were roughly parallel to 

the 45 results, but in the opposite direction. 

∆T results. The results indicated that there was a large significant correlation between 

∆N and ∆T for all conditions. As can be seen by viewing Table F2, error decreased for true 

cutscores near the center of the distribution, and increased for true cutscores further out from the 

center, as bimodality increased. As can be seen in Figures F1 – F50, as the bimodality increased, 

there was less and less density in the middle most part of the distribution, resulting in fewer FN 

and FP. Meanwhile, the density increased on either side of the true cutscores further out, 

resulting in more and more error as the bimodality increased. Accordingly, as can be seen in 

Table F4, when the observed cutscore is set equal to the true cutscore, GW-CSOF 
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underestimated error for true cutscores further out from the mean as bimodality increased, and 

overestimated error for true cutscores near the mean.  

Kurtosis 

Table 4: Kurtosis Results with n=50: Correlations Between ∆N, ∆L, and ∆T 

 Optimum Cutscore Location Error Rate at True Cutscore 

True Cut Location Spearman's Rho p Spearman's Rho p 

45 0.35 0.011 0.96 <.001 

47.5 0.89 <.001 0.49 <.001 

52.5 0.9 <.001 0.55 <.001 

55 0.22 0.118 0.96 <.001 

 

∆L results. As can be seen in Table 4, only the 47.5 and 52.5 conditions were significant 

at the .01 alpha level of significance.  

Cutscore at 45. There was no significant correlation between ∆N and ∆L for the 45 

condition. Thus, increased kurtosis did not predict differences between GW-CSOF estimates of 

the optimal cutscore, and actual optimal cutscore. As can be seen in Table G1, the location of the 

optimal error remained relatively constant, and ends almost exactly where it begins, thus it never 

departed far from the GW-CSOF estimated location (Table G3). 

Cutscore at 47.5. There was a significant large correlation between ∆N and ∆L for the 

47.5 condition. As can be seen in tables G1 and G2, as kurtosis increased, FN went up and FP 

went down at a fixed cutscore location. This was due to the increased density just to the right of 

the true cutscore, resulting in an increase in the FN rate. The optimal cutscore moved to the left 

as the kurtosis increased, seeking a location to alleviate the increase in FN while also keeping FP 

low, which was made possible by the lower FP rates to the left as kurtosis increases.  

Cutscore at 52.5. There was a significant large correlation between ∆N and ∆L for the 

52.5 condition. As can be seen in Tables E1 and E2, this was a similar of the 47.5 condition, with 
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FP going up and FN going down at a fixed cutscore location as kurtosis increased. Similarly, the 

optimal cutscore moved right as the kurtosis increased.  

Cutscore at 55. There was no significant correlation between ∆N and ∆L for the 55 

condition. This was effectively a mirroring of the 45 condition. Thus, increased kurtosis did not 

predict differences between GW-CSOF estimates of the optimal cutscore, and actual optimal 

cutscore. As can be seen in Table G1, the location of the optimal error remained relatively 

constant, and ends almost exactly where it began, thus it never moved far away from the GW-

CSOF estimated location (Table G3). 

∆T results. There was a significant large correlation for both the 45 and 55 conditions, 

and a significant moderate correlation for both the 47.5 and 52.5 conditions.  

As can be seen in Table G2, total error remained similar for true cutscores near the center 

of the distribution, resulting in only a moderate correlation between ∆N and ∆T. This was due to 

small decreases in FP with only slightly larger increases in FN as the kurtosis increased for 47.5, 

and the reverse effect for 52.5. For 45 and 55, the large correlation between ∆N and ∆T was 

visibly due to the near monotonic decrease in both types of error as kurtosis increased: FP and 

FN error each fall to near half their starting values by the end of kurtosis manipulations for both 

conditions.  

Summary 

 The results indicated that for the truly normal condition, GW-CSOF error estimates and 

actual error values, as well as GW-CSOF estimates of the optimal cutscore and actual location of 

the optimal cutscore, were nearly identical. For the non-normal manipulations, some conditions 

were significant and others were not. For skewness, the 45, 47.5, and 52.5 conditions all showed 

a significant correlation between increased non-normality and ∆L. The correlations were large 
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for a true cutscore of 45, and moderate for 47.5 and 52.5. The correlation between non-normality 

and ∆T were large and significant for all conditions. 

For bimodality, there was a significant correlation for all conditions between non-

normality and ∆L. The correlations were moderate for 45 and 55, and large for 47.5 and 52.5. 

The correlation between non-normality and ∆T were large and significant for all conditions. 

Finally, for kurtosis, there was a significant and large correlation for the 47.5 and 52.5 

conditions, and no significant correlation for the 45 and 55 conditions, between non-normality 

and ∆L. The correlation between non-normality and ∆T was large and significant for 45 and 55, 

and moderate and significant for 47.5 and 52.5.  
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Chapter 5: Discussion 

The GW-CSOF method, also known in the literature as the cutscore operating function, 

or the ‘Grabovsky curve’, is a method for estimating classification error rates, as well as for 

finding the optimal cutscore (i.e., the observed cutscore where classification error is minimized). 

Among the assumptions of the GW-CSOF is that examinee true scores are distributed normally. 

The present research has investigated the extent to which the GW-CSOF estimates are correct 

using Monte Carlo simulations. These simulations systematically manipulated normality (i.e., 

how Gaussian the distribution was) of examinee true score distributions in three different ways 

(skewness, bimodality, and kurtosis), and the correctness of the GW-CSOF method was checked 

at each progressive step away from normality. Answers to specific research questions were 

sought, which would confirm or refute specific research hypotheses. 

Do GW-CSOF estimates of optimal cutscores match the actual location of the optimal 

cutscore, and does the match change as non-normality increases? 

 The GW-CSOF estimates of optimal cutscore location were found to be almost identical 

to the location of the actual cutscore in the truly normal case. This provides good evidence that 

the GW-CSOF estimates are valuable predictors of the true optimal cutscore when model 

assumptions are met.  

 There was a significant relationship between the degree of non-normality and the degree 

to which the GW-CSOF estimated optimal cutscore differed from the actual optimal cutscore 

location for most of the non-normality manipulations. For three of the four skewness conditions, 

for all the bimodal conditions, and for two of the four kurtosis conditions, increased non-

normality predicted increased incorrectness in the GW-CSOF estimates.  



41 
 

 Thus, research hypothesis I, that the GW-CSOF method would estimate a location for the 

optimal cutscore near the location of the actual optimal cutscore when normality assumptions of 

the true score distribution were met, was supported: the GW-CSOF method produced optimal 

cutscore locations close to actual optimal cutscore locations when the normality assumptions of 

the true score distribution were met.  

Research hypothesis II, increased non-normality in the true score distribution would 

cause increased incorrectness in GW-CSOF estimates of the optimal cutscore, was partially 

supported. Increased non-normality in the true score distribution caused increased incorrectness 

in optimal cutscore location estimation, but not in all conditions. In the specific manipulations 

conducted in this dissertation, increased skewness predicted increased incorrectness in GW-

CSOF estimation of optimal cutscore location when the true cutscore was on the opposite side of 

the skew, and when it was near the middle of the distribution on either side, but not when it was 

located a standard deviation away from the center, near to the tail containing the increasing 

skewness. This was likely due to the relatively constant density just above and below the true 

cutscore (55 in this case). That is to say that the proportion of simulated examinees that were just 

below the minimally proficient threshold, relative to the proportion of simulated examinees just 

above that threshold, remained relatively constant throughout the manipulation. While there were 

more and more examinees in the extreme right of the tail, those examinees had an infinitesimal 

chance of being FN errors, meanwhile the corresponding decrease in the center of the 

distribution did not alleviate FP rates as those examinees were too far below the true cutscore to 

have been likely FP errors already. This maintained relatively constant density near the true 

cutscore. 
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There was a significant relationship between increased bimodality and increased error in 

GW-CSOF estimation of optimal cutscore location for all bimodal manipulations. For the outer 

true cutscores (45 and 55) the optimal location for observed cutscores in the truly normal case 

began just a little toward the tail from the true cutscore. As bimodality increased, the two modes 

effectively became 45 and 55, placing the true cutscore essentially at the center of a normal 

distribution. Thus, there was roughly an equal cost to moving in either direction away from the 

center (i.e., the rate of FP increased at roughly the same rate FN decreased), and the optimal 

cutscore came to settle at approximately the same location as the mode. For those manipulations 

near the center, there was no place near that the optimal cutscore could move toward where error 

(FP for 47.5 and FN for 52.5) could be minimized, without a dramatic increase in the respective 

error.  

In the kurtotic manipulations, increased (positive) kurtosis predicted increased 

incorrectness of GW-CSOF estimation of optimal cutscore locations when the true cutscore was 

near the center of the distribution, but not when it was located a standard deviation away from 

the mean in either direction. The density near the cutscores in these locations remained relatively 

constant, while the center of the distribution took on more and more of the density. Thus, there 

was a dramatic shift in the optimal cutscore location near the center, but no significant 

relationship between kurtosis and the location of the optimal cutscore location further out.  

Do GW-CSOF estimates of error at the true cutscore location match actual error rates, and 

does the match change as non-normality increases? 

The GW-CSOF estimates of total error at the true cutscore location (as well FP and FN) 

were found to be almost identical to the actual error rates in the truly normal case. This provides 

good evidence that the GW-CSOF estimates of error are valuable predictors of the classification 
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error when model assumptions are met. There was also a significant relationship between the 

degree of non-normality and the degree to which the GW-CSOF estimated error rates differed 

from the actual error rates for all of the non-normality manipulations.  

 Thus, research hypothesis III, that the GW-CSOF method would produce error estimates 

close to actual error values when the normality assumptions of the true score distribution were 

met, was supported. The GW-CSOF method produced error estimates close to actual error values 

when the normality assumptions of the true score distribution were met. 

Hypothesis IV, that increased non-normality in the true score distribution would cause increased 

incorrectness in error estimates, was also supported. Increased non-normality caused increased 

incorrectness in GW-CSOF error estimates for all manipulations tested. 

 For the skewness manipulations, when the true cutscore was on the opposite side as the 

skew, error increased at a fixed point as the skewness increased. For true cutscores on the same 

side as the skew, at a fixed point, error decreased as the skewness increased. Thus, GW-CSOF 

underestimated error at the true cutscore when the true cutscore location was on the opposite side 

of the distribution from the skew, and GW-CSOF overestimated error when the true cutscore was 

on the same side as the skew.  

 For the bimodality manipulations, when the true cutscore was near the center of the 

distribution, there was less and less FN and FP error as bimodality increased, as the density at the 

center shrank. For true cutscores further away from the center, error increased as the density 

under the true cutscore increased. Thus, as bimodality increased, GW-CSOF underestimated 

error for true cutscores a standard deviation away from the mean, and overestimated error for 

true cutscores nearer to the mean.  
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 Finally, for the kurtosis manipulations, both FP and FN error for true cutscores one 

standard deviation away from the mean decreased as kurtosis increased. Thus, GW-CSOF 

overestimated error for both cutscores one standard deviation from the mean. For true cutscores 

nearer to the mean, the relationship was more complicated. For the 47.5 condition, FP error 

decreased, while FN error increased, as kurtosis increased. This resulted in an overall error that 

was relatively steady throughout, resulting in only a moderate correlation between changes in 

normality and total error. The reverse was found for the 52.5 condition, where FN decreased 

while FP increased proportionally. Again, the total error was roughly the same, resulting in a 

moderate correlation between changes in normality and total error. Thus, GW-CSOF 

underestimated FN error for the true cutscore manipulation just below the mean, while 

overestimating FP error, as kurtosis increased. Similarly, GW-CSOF underestimated FP error for 

the true cutscore just above the mean, while overestimating FN error, as kurtosis increased.  

Are the Differences Meaningful? 

 The present paper has demonstrated and discussed the statistical relationship between 

increases in non-normality and the correctness of GW-CSOF estimates, but thus far it has not 

discussed the magnitude of that incorrectness. In order to be useful to a standard setting 

committee, it is necessary to know how different G&W estimates are from actual values. 

Discussion proceeds by breaking non-normality manipulations into three categories: the 17th, the 

35th, and the 50th manipulations. These corresponded to true score skewness of .63, 1.32, and 

1.97, true score bimodality D of 6.1, 8.9, and 9.9, and true score kurtosis of 3.9, 5.1, and 6.03, 

respectively. These three divisions are henceforth referred to as the ‘minutely non-normal’, the 

‘moderately non-normal’, and the ‘largely non-normal’. For each manipulation that was found to 

have a significant effect, the meaningfulness of the GW-CSOF methods misestimation is 
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discussed. First, differences between error at the actual optimal cutscore was compared to the 

actual error rates at the GW-CSOF estimated optimal cutscore. This allowed for comparison of 

how much more or less error would be made by using GW-CSOF estimated optimal cutscores 

rather than the actual optimal cutscores. 

 Additionally, comparison was made between actual error and GW-CSOF estimates of 

error for observed cutscores set to be equal to true cutscores. This information might be useful to 

standard setting committees who wish to use GW-CSOF to determine the error present at a given 

true cutscore.  

Optimal cutscore. Table 5 provides information on the differences between error rates at 

the actual optimal cutscore and the GW-CSOF estimated cutscore. For the minutely non-normal 

manipulations, the largest difference in total error was -.01, indicating that for every 100 

examinees tested, one additional examinee would be misclassified beyond what GW-CSOF 

estimated at its estimate of the optimal cutscore. Based on the present manipulations, it appears 

that small amounts of skewness, bimodality, or kurtosis do not have a meaningful impact on the 

utility of the GW-CSOF methods estimation of the optimal cutscore location.  

For medium skewness and kurtosis, there was a similarly trivial increase in error. For the 

bimodal manipulations, however, when the true cutscore was located near the center of the 

distribution, an additional 3 examinees for every 100 tested would be misclassified. Thus, it 

appears that moderate non-normality did have a small but meaningful impact on GW-CSOF’s 

estimation of the optimal cutscore, particularly for bimodality when the true cutscore is near the 

mean.  

Finally, in the largely non-normal manipulation, several conditions appear to have 

meaningfully increased error rates. For the skewness condition, when the true cutscore was on 



46 
 

the opposite side of the distribution from the skew, an additional 5 of every 100 examinees 

would be misclassified. For the kurtosis condition, for true cutscores near the center of the 

distribution, an additional 3 out of every 100 examinees would be misclassified. Finally, for the 

bimodal conditions with true cutscores near the mean, an additional 9 out of every 100 

examinees would be misclassified. Thus, it appears that large non-normality had a meaningful 

impact on GW-CSOF’s estimation of the optimal cutscore for all three normality manipulations. 

In short, it appears that GW-CSOF’s estimates of the optimal cutscore location provide a 

close approximation (in terms of minimal error location) when normality is only slightly 

violated. In the case of moderate or large violations of normality, caution should be taken when 

using GW-CSOF estimates of optimal error location. 

True cutscore. Table 6 provides useful information for the event that a standard setting 

panel uses the GW-CSOF estimates to get a sense of the error rates if the observed cutscore is set 

equal to the true cutscore. Based on the manipulations in this dissertation, it appears that minute 

non-normality lead to relatively minor misestimation of the error at the true cutscore. In the 

worst case, with minute kurtosis and a true cutscore of 47.5, two additional students per every 

100 would be misclassified beyond what was estimated by the GW-CSOF method. 

For moderate skewness, GW-CSOF underestimated error for both conditions on the 

opposite side of the distribution from the skew. For the worst of these, an additional four out of 

every 100 examinees would have been misclassified in addition to the GW-CSOF method 

estimates. GW-CSOF overestimated error for cutscores on the same side of the distribution as 

the skew. For moderate non-normality, the bimodal conditions were fairly closely estimated by
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Table 5: Difference between actual error at actual optimal cutscore & actual error at estimated 

optimal cutscore 

  45   47.5   52.5   55  
Minute ∆ FP ∆ FN ∆Tot. ∆ FP ∆ FN ∆Tot. ∆ FP ∆ FN ∆Tot. ∆ FP ∆ FN ∆Tot. 

Skew 0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 0.01 0.00 NA NA NA 

Bimodal -0.01 0.00 0.00 -0.03 0.02 -0.01 0.02 -0.03 -0.01 0.00 -0.01 0.00 

Kurtosis NA NA NA 0.02 -0.02 0.00 -0.01 0.01 0.00 NA NA NA 

Moderate             
Skew 0.02 -0.02 0.00 -0.02 0.02 0.00 -0.01 0.01 0.00 NA NA NA 

Bimodal -0.02 0.02 0.00 -0.05 0.02 -0.03 0.04 -0.06 -0.02 0.02 -0.02 0.00 

Kurtosis NA NA NA 0.01 -0.02 -0.01 -0.04 0.03 -0.01 NA NA NA 

Large             
Skew 0.02 -0.07 -0.05 -0.05 0.04 -0.01 -0.02 0.01 -0.01 NA NA NA 

Bimodal 0.02 -0.02 0.00 -0.10 0.01 -0.09 0.02 -0.11 -0.09 0.06 -0.06 -0.01 

Kurtosis NA NA NA 0.02 -0.05 -0.03 -0.06 0.03 -0.03 NA NA NA 
*Note: Difference is actual optimal error - actual error at the GW-CSOF estimated optimal location. NA’s 
denote non-significant results. 

 

 

Table 6: Difference between actual and GW-CSOF estimate of error at true cutscore 

  45   47.5   52.5   55  
Minute ∆ FP ∆ FN ∆Tot. ∆ FP ∆ FN ∆Tot. ∆ FP ∆ FN ∆Tot. ∆ FP ∆ FN ∆Tot. 

Skew 0.00 0.01 0.01 0.01 0.00 0.01 0.00 -0.01 -0.01 0.00 -0.01 -0.01 

Bimodal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Kurtosis -0.01 0.00 -0.01 0.00 0.02 0.02 0.01 0.00 0.00 0.00 -0.01 -0.01 

Moderate             
Skew 0.00 0.03 0.03 0.02 0.02 0.04 0.00 -0.02 -0.02 -0.01 -0.01 -0.02 

Bimodal 0.01 0.00 0.01 0.00 -0.01 -0.01 -0.01 0.00 -0.01 0.00 0.00 0.01 

Kurtosis -0.02 -0.01 -0.03 -0.02 0.03 0.01 0.03 -0.02 0.01 -0.01 -0.02 -0.03 

Large             
Skew -0.02 0.06 0.05 0.06 0.02 0.07 -0.01 -0.02 -0.03 -0.02 -0.01 -0.04 

Bimodal 0.05 0.04 0.09 0.03 -0.07 -0.04 -0.07 0.03 -0.04 0.03 0.05 0.09 

Kurtosis -0.02 -0.02 -0.04 -0.03 0.03 0.00 0.03 -0.03 0.00 -0.02 -0.01 -0.04 
*Note: Difference is actual error at true cutscore - GW-CSOF estimate of error at true cutscore
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GW-CSOF, at worst being slight overestimates for 47.5 and 52.5, and slight underestimates for 

45 and 55. For moderate kurtosis, GW-CSOF underestimated error for 45 and 55. An additional 

three out of every 100 examinees would have been misclassified at these cutscores than were 

estimated by GW-CSOF. For those cutscores nearer the mean (47.5 and 52.5) GW-CSOF 

slightly overestimated error (one per 100).  

 For largely non-normal true score distributions, substantial misestimation occurred. As 

many as 9 additional examinees out of every 100 would have been misclassified in the bimodal 

conditions 45 and 55, and as many as 7 additional examinees would have been misclassified for 

skewness of 45 and 47.5. Kurtosis did not appear to substantially impact GW-CSOF estimation 

of error for moderate and large kurtosis when true cutscores were set near the mean of the 

distribution.  

The direction of the misclassifications discussed above is important to consider. 

Underestimating error is likely to be more problematic than overestimation, as it may provide a 

false and potentially harmful belief in the accuracy of classification results. In the interest of 

minimizing classification error, and thus minimizing the number of examinees who are 

mishandled by the classification processes, underestimation is a greater problem than is 

underestimation. Thus, the most problematic conditions are those which have large positive 

values in Table 6. Particularly problematic were moderate skewness with true cutscore 47.5, 

large skewness with true cutscores 45 and 47.5, and large bimodality with true cutscores 45 and 

55.  

Limitations 

Larger simulations, or non-random simulations, would have been better. Simulations of 

10,000 produced problematic volatility between runs, and made generalizations from this study 
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more tenuous than they could have been with larger samples. Random variation due to random 

sampling produced somewhat inconsistent results in the true score distributions. A more 

controlled and elegant approach would have been to directly specify the true score distribution 

using intentional sampling (rather than random) at regular increments of the respective 

distributions. I.e., in the skewness manipulation, for a given skewness value, the actual 

distribution is completely specified as indicated in the methods section. It would have been 

possible to use that specified distribution, and to create from it a distribution which represented it 

systematically.  

Kendall’s tau may be been a better statistic to use than Spearman’s rho. Spearman’s rho 

was chosen because it had been shown to have good power to detect small differences. However, 

statistical significance of Spearman’s rho is not exactly specified when there are ties, making it 

necessary to be conservative in interpreting significant results. Kendall’s tau would have 

alleviated this complication. 

Future Research Recommendations 

The results and discussion of this dissertation presented information that indicates that, in 

certain conditions, the GW-CSOF overestimates error, and underestimates error in other 

situations. Additional research should be conducted to replicate these findings, particularly with 

respect to the magnitude of differences between the GW-CSOF and actual error values/locations 

of optimal cutscores. This work could then be used to provide explicit correction guidelines for 

standard setting panels who observe specific amounts of non-normality in their examinee 

samples. Ideally, these correction factor guidelines would span the range of all possible 

cutscores, in order for standard setting panels to be able to consider potential cutscores with well 

researched correction factors, thus providing as much information to standard setting panels as 
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possible. Ideally, these correction factors would be built into software for standard setting (e.g., 

Runyon & Grabovsky, 2018; Pace & Grabovsky, 2019) to maximize their ease-of-use 

This dissertation has demonstrated that non-normality, in the form of skewness, 

bimodality, or kurtosis, has an effect on the accuracy of the GW-CSOF. It would be useful for 

future research to explore the impact of combined forms of non-normality. That is, to investigate 

the degree to which combined non-normality, such as simultaneously increased skewness and 

kurtosis, yields inaccuracies in the GW-CSOF estimates. 

Conclusions 

 The GW-CSOF method has great potential for use in standard setting. It offers standard 

setting committees the ability to predict classification error rates at all possible observed scores, 

as well as to determine the location of the optimal cutscore (i.e., where error is minimized). This 

dissertation sought to determine how well GW-CSOF estimates matched actual values of error 

and optimal cutscores when true score normality assumptions were met, as well as when those 

assumptions were systematically violated. Generally, this dissertation supports the use of GW-

CSOF estimates for normally distributed true scores, as well as for true score distributions which 

are only slightly non-normal. Caution is advised for standard setting panels who might wish to 

use GW-CSOF estimates with substantially non-normal examinee data. Particularly, standard 

setting panels should be advised that GW-CSOF may indicate a sub-optimal cutscore location, 

i.e., choosing a position where error is not in fact minimized. In the worst of these cases, 

simulation results showed that for large skewness, when the true cutscore was set to the opposite 

side of the skew, an additional 5 of every 100 examinees would be misclassified due to selecting 

the GW-CSOF estimated optimal cutscore rather than the actual optimal cutscore. For large 

kurtosis, when the true cutscore is near the center of the distribution, an additional 3 out of every 
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100 examinees would have been misclassified, and for large bimodality, with true cutscores near 

the mean, an additional 9 out of every 100 examinees would be misclassified. Thus, using GW-

CSOF estimates of optimal error should be done with caution when working with moderately or 

largely non-normal data. 

 Furthermore, standard setting panels might also want to use GW-CSOF to estimate error 

if the observed cutscore is set equal to the true cutscore. Caution should be taken for heavily non-

normal examinee distributions in this situation as well. Particularly, the panel should be cautious 

of skewness which exists on the opposite side of the examinee distribution from their true 

cutscore, and also of bimodality in which either of the separate modes are near to the true 

cutscore, as simulation results showed that as many an additional 9 out of every 100 examinees 

would be misclassified over and above what was estimated by GW-CSOF. Thus, in such 

situations, GW-CSOF should be thought of as a lower estimate of error, and only used with 

extreme caution. 

 From a practical and applied standpoint, standard setting panel members should consider 

the following. As was observed in this simulation study, observed score non-normality may well 

be lower than the corresponding true score non-normality. The true shape of the true score 

distribution is always unknown in practice, but the information found in the present study can 

provide some approximate guidelines. This dissertation demonstrated that, at least as 

manipulated in this study, observed score skewness values below .46, bimodality (when equally 

distanced from the mean) of less than about 1.66 times the standard deviation (i.e., 8.3/5 = 1.66), 

and kurtosis of less than 3.5, all appeared to produce relatively correct GW-CSOF estimates of 

the optimal cutscore. Panelists should exercise caution when they observed score histograms 

which indicate that the observed score distribution may have skewness, bimodality, or kurtosis 
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above these points, and note that they may be receiving over-estimates or underestimates 

(depending on the condition, see earlier discussion) if they proceed to use the GW-CSOF with 

such non-normal distributions. 

To bring the discussion thus far into context, it is worth returning to an example from the 

literature review portion of this dissertation, to refresh the notions on which this dissertation was 

written, specifically, about what false positive and false negatives mean in context of an actual 

exam. Suppose that an exam is given to 10,000 examinees, and the error rate is 3%. That would 

mean that 300 examinees are being wrongly classified by the given exam.  Suppose that, through 

the use of the GW-CSOF, the standard setting panel is able to find the optimal cutscore location 

which decreases the error rate by 2%. This would then result in 200 examinees receiving the 

correct classification that otherwise would have been handled incorrectly by the exam. Now, 

suppose that the GW-CSOF provides an incorrect estimate of the optimal cutscore, which leads a 

standard setting panel to choose a score which is 1% less optimal than the actual optimal (which, 

as was said, decreased the error rate by 2%). That would mean that an additional 100 of every 

10,000 examinees is misclassified over what the actual optimal cutscore would have yielded. 

These principals will be useful to bear in mind when considering the information that has been 

provided above. 

Overall, GW-CSOF is a useful and powerful tool for standard setting. This dissertation 

will hopefully contribute to the research base for the GW-CSOF method, and inform potential 

users of when they should proceed cautiously, and what they might expect in various non-normal 

situations. 
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Appendix A: Systematic increase of skewness with fixed mean and variance 

 Using the exponentially modified normal distribution, with S=X+Y, the 

mean and variance are given by the sum of the means and variances of x and y, and skewness is 

given by equation 7. As stated earlier, the mean of S will be fixed to 50, and variance of S will be 

25. We have three equations and three unknowns. That is, 

 Let µ be the mean of the normal distribution, X, and let 𝜃 be the mean of the 

exponential distribution Y. Let 𝜎2 be the variance of X, and 𝜃2 be the variance of Y. Let s be the 

fixed (i.e., constant) skewness of a given manipulation. Then, using the above specifications: 

 

 µ + 𝜃 = 50 (i) 

 𝜎2 + 𝜃2 = 25 (ii) 

 2𝜃3

(𝜎2 + 𝜃2)3/2
= s 

 

(iii) 

Where s is the fixed skewness. We have three unknowns and 3 equations, which can be solved 

algebraically.  Using equations ii and iii 

𝜃2 = 25 − 𝜎2 

And,  

𝜎2 = (
2𝜃3

𝑠
)

2
3

− 𝜃2 

Thus,  

 
𝜃2 =

25(𝑠)2/3

22/3
 

(iv) 

Once s is chosen, 𝜃, 𝜎2 and µ are determined. 
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Appendix B: Systematic increase of bimodality with fixed mean and variance 

 Using a mixture of normals with equal weight (i.e., mixing weight w = ½) 

the mean and variance are given by equations 10 and 11. Let Z be the mixture, then 𝑍 = 𝐼𝑋 +

(1 − 𝐼)𝑌, where X and Y are the respective normal random variables, I is an indicator with I=1 

having probability w. As stated earlier, the mean of Z was fixed to 50, and variance of Z was 

fixed to 25. Let µ𝒎 be the mixture mean, and let 𝜎𝑚
2 be the mixture variance. We establish that µ1 

and µ2 are the means of the first input normal, and the second, respectively, and 𝜎1
2 and 𝜎2

2 are 

their respective variances. We define D as the distance between µ1 and µ2, and let µ1 > µ2 for all 

values, thus D = |µ1 − µ2| = µ1 − µ2. Using the equations for the mean and variance of the 

mixture, given by equations 10 and 11, we now have two equations and two unknowns. That is: 

µ𝑚 = 𝑤µ1 + (𝑤 − 1)µ2 

With µ𝑚 = 50 and w=1/2 this simplifies to  

50 =
1

2
µ1 +

1

2
µ2 

(i) 

The variance also simplifies by setting 𝜎1
2 and 𝜎2

2 to be equal, which we call v.   

𝜎𝑚
2 = 25 =

1

2
(𝑣 + µ1

2) + 𝑤(𝑣 + µ2
2) − 502 

Which, replacing µ1 and µ2 by their respective relationship to D, which determines each, and 

solving algebraically, we can rewrite as 

𝑣 = 25 −
𝐷2

4
 

(ii) 

Using equations i and ii, for any specified D, the values of v, µ1, µ2, are specified. 
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Appendix C: Systematic increase of kurtosis with fixed mean and variance 

 Using a mixture of normals with equal weight (i.e., mixing weight w = ½) 

the mean and variance are given by equations 10 and 11, and the kurtosis of the mixture is given 

by equation 12 Let Z be the mixture, then 𝑍 = 𝐼𝑋 + (1 − 𝐼)𝑌, where X and Y are the respective 

normal random variables, I is an indicator with I=1 having probability w. As stated earlier, the 

mean of Z was fixed to 50, and variance of Z were fixed to 25. Let µ𝒎 be the mixture mean, and 

let 𝜎𝑚
2  be the mixture variance. We establish that µ1 and µ2 are equal, as stated in the Methods 

section, and we let 𝜎1
2 and 𝜎2

2 be the variances of the two mixtures. Using the equations for the 

variance and kurtosis of the mixture, given by equations 11 and 12, we now have two equations 

and two unknowns. That is: 

Each input normal has a mean of 50, and the resulting mixture does as well.  

Using this result,  𝜎2
2 can be expressed in terms of 𝜎1

2, i.e.: 

𝜎2
2 = 50 − 𝜎1

2 

 

(i) 

Finally, substituting equation i into equation 12, we find the result that for a fixed kurtosis, k, 𝜎1
2 

is equal to: 

𝜎1
2 =  25 + √

𝑘 ∗ 625

3
− 625 

 

(ii) 

Thus, with µ1 and µ2 fixed, 𝜎1
2 and 𝜎2

2 are determined by the fixed kurtosis value.  

 

  



61 
 

Appendix D: Simulation Results 

Skewness       

Distribution True Observed 
Mean 

True 
Mean 

Obs 
Var 

True Var Obs 

0.00 -0.03 -0.03 50.08 50.12 24.95 31.55 

0.04 0.04 0.01 49.97 49.99 24.70 30.63 

0.08 0.09 0.06 50.01 50.06 24.99 31.37 

0.12 0.11 0.07 50.05 50.04 25.31 31.42 

0.16 0.12 0.08 49.94 49.99 25.21 32.20 

0.20 0.28 0.19 49.94 49.94 24.87 30.98 

0.24 0.28 0.20 50.03 50.03 24.40 30.41 

0.28 0.28 0.18 50.08 50.10 25.09 31.27 

0.32 0.31 0.25 49.99 49.99 25.04 30.69 

0.36 0.36 0.27 49.96 49.94 24.54 30.49 

0.40 0.39 0.29 49.91 49.88 24.73 30.67 

0.44 0.41 0.27 50.06 50.06 24.38 30.31 

0.48 0.50 0.33 49.99 50.01 25.15 31.64 

0.52 0.53 0.35 50.06 50.05 25.22 31.56 

0.56 0.51 0.35 49.92 49.97 24.58 30.11 

0.60 0.62 0.44 49.99 50.00 25.19 31.38 

0.64 0.63 0.46 50.00 49.99 25.15 31.29 

0.68 0.74 0.55 50.13 50.12 25.48 32.04 

0.72 0.78 0.55 49.94 49.92 25.61 32.16 

0.76 0.86 0.59 49.98 50.03 25.41 32.19 

0.80 0.72 0.49 49.99 50.02 23.96 29.94 

0.84 0.82 0.60 49.96 49.94 24.72 31.19 

0.88 0.87 0.60 50.03 50.05 25.44 31.85 

0.92 0.85 0.59 49.93 49.96 23.61 29.76 

0.96 0.92 0.68 49.97 49.98 24.91 30.72 

1.00 0.96 0.71 50.01 49.98 24.63 30.64 

1.04 1.00 0.74 49.95 49.96 24.76 31.02 

1.08 1.06 0.78 50.07 50.09 24.82 30.85 

1.12 1.15 0.82 50.10 50.14 25.87 32.18 

1.16 1.26 0.88 50.00 50.02 24.90 31.23 

1.20 1.29 0.91 50.04 50.03 26.12 32.20 

1.24 1.20 0.87 50.02 50.05 25.04 31.15 

1.28 1.24 0.91 49.97 49.97 24.14 30.00 

1.32 1.32 0.97 50.01 49.97 25.56 31.68 

1.36 1.32 0.94 50.00 50.04 24.71 30.92 

1.40 1.39 1.00 49.95 49.95 25.09 30.89 

1.44 1.37 0.94 49.95 49.92 24.37 30.57 

1.48 1.53 1.13 49.98 49.99 25.39 31.36 

1.52 1.47 1.08 49.94 49.96 24.40 30.61 

1.56 1.44 1.03 49.97 50.01 24.24 30.59 
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1.60 1.61 1.14 50.11 50.10 26.03 32.29 

1.64 1.72 1.27 49.98 49.96 25.72 32.06 

1.68 1.77 1.28 49.99 50.01 25.48 31.92 

1.72 1.68 1.20 49.98 49.97 24.58 31.29 

1.76 1.66 1.21 50.11 50.12 25.29 31.60 

1.80 1.70 1.22 49.98 49.99 24.93 30.99 

1.84 1.79 1.27 50.08 50.05 25.32 32.01 

1.88 2.07 1.51 50.00 50.04 26.06 32.30 

1.92 1.85 1.30 49.97 49.92 24.12 30.37 

1.96 1.97 1.40 49.98 49.99 24.77 30.96 

       
Bimodality      

Distribution True Observed 
Mean 

True 
Mean 

Obs 
Var 

True Var Obs 

7.00 1.50 1.10 49.97 49.93 24.68 30.77 

7.20 3.70 2.40 49.99 49.97 25.30 31.09 

7.40 2.80 2.90 49.94 49.94 24.56 30.53 

7.60 4.70 3.60 50.01 50.02 24.88 31.56 

7.80 7.40 2.30 50.01 50.02 25.35 32.03 

8.00 7.90 5.70 49.99 50.00 25.08 31.17 

8.20 7.80 5.20 50.03 50.01 24.61 31.34 

8.40 8.60 10.30 50.06 50.07 25.25 31.58 

8.60 9.20 8.30 49.97 49.97 25.00 31.29 

8.80 9.50 5.60 49.98 50.02 25.10 30.97 

9.00 8.70 8.50 49.99 49.99 24.93 31.12 

9.20 8.50 9.60 50.01 50.02 25.26 31.78 

9.40 9.20 7.50 50.00 49.95 24.81 30.44 

9.60 10.10 9.70 50.00 49.99 24.97 31.91 

9.80 10.10 8.70 50.00 49.98 24.94 31.30 

       
Kurtosis       

Distribution True Observed 
Mean 

True 
Mean 

Obs 
Var 

True Var Obs 

3.00 3.03 2.92 50.08 50.12 24.95 31.55 

3.06 3.14 3.07 49.97 49.97 24.70 30.84 

3.12 3.11 3.06 49.94 49.90 24.41 30.83 

3.18 3.12 3.07 50.10 50.15 24.83 31.19 

3.24 3.31 3.21 49.99 49.94 25.04 31.26 

3.30 3.28 3.17 50.03 50.03 24.58 30.97 

3.36 3.31 3.26 50.06 50.03 25.26 31.44 

3.42 3.39 3.20 50.03 50.04 25.10 31.18 

3.48 3.39 3.32 50.02 50.04 24.13 30.24 

3.54 3.53 3.37 49.96 50.00 24.39 30.54 

3.60 3.49 3.32 49.97 49.98 25.15 31.61 

3.66 3.61 3.49 50.01 49.98 25.57 31.64 
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3.72 3.58 3.39 50.06 50.09 25.29 31.24 

3.78 3.82 3.48 50.00 50.02 25.43 32.04 

3.84 3.67 3.48 50.08 50.06 24.83 30.62 

3.90 3.90 3.52 50.00 50.02 25.54 31.53 

3.96 3.90 3.54 49.96 49.98 24.09 30.50 

4.02 4.08 3.57 50.03 49.97 25.01 31.49 

4.08 4.01 3.49 49.97 49.94 24.05 30.23 

4.14 4.15 3.88 49.99 49.96 25.21 31.28 

4.20 4.08 3.64 49.92 49.96 25.31 32.04 

4.26 4.21 3.72 49.96 49.93 24.51 30.63 

4.32 4.63 4.14 50.05 50.10 24.70 31.26 

4.38 4.39 3.86 50.07 50.07 25.51 31.75 

4.44 4.47 3.95 50.00 49.96 25.47 32.10 

4.50 4.54 4.10 50.09 50.05 25.70 31.82 

4.56 4.69 4.06 50.04 50.01 24.24 30.43 

4.62 4.59 4.02 50.02 50.05 25.68 31.88 

4.68 4.98 4.30 50.08 50.08 24.54 30.77 

4.74 5.02 4.31 50.06 50.08 25.02 31.57 

4.80 4.81 4.19 49.95 49.93 25.53 31.38 

4.86 4.80 4.19 50.01 50.06 26.15 32.30 

4.92 4.86 4.16 49.97 50.00 24.58 30.71 

4.98 4.85 4.15 50.08 50.05 25.30 32.01 

5.04 4.97 4.19 49.97 49.97 24.74 30.70 

5.10 5.10 4.41 49.98 49.94 24.57 30.61 

5.16 5.24 4.38 50.01 50.00 24.78 30.63 

5.22 5.14 4.50 49.87 49.87 25.23 31.55 

5.28 5.44 4.49 50.00 50.01 25.49 31.72 

5.34 5.31 4.48 50.04 50.04 25.85 32.49 

5.40 5.40 4.58 50.01 50.03 24.48 30.69 

5.46 5.26 4.40 50.01 50.00 23.83 30.79 

5.52 5.57 4.59 50.13 50.13 24.80 31.13 

5.58 5.82 4.93 49.96 49.96 25.06 31.50 

5.64 5.68 4.76 49.99 50.03 24.72 30.59 

5.70 6.08 4.93 49.99 49.99 24.10 30.40 

5.76 5.67 4.68 50.07 50.08 24.40 30.95 

5.82 5.96 4.88 49.97 49.92 24.66 30.51 

5.88 5.74 4.72 49.99 49.98 25.10 31.37 

5.94 6.03 4.93 49.99 49.97 24.68 31.20 
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Appendix E: Skewness Results 

 Table E1:Error Rates and Location of Actual Optimal Cutscore with Increasing Skewness 

Truescore 
Skewness 

45   47.5   52.5   55   
fp fn loc fp fn loc fp fn loc fp fn loc 

-0.03 0.052 0.024 43.6 0.076 0.054 46.8 0.059 0.069 53 0.021 0.063 56.8 

0.04 0.06 0.026 43.6 0.081 0.046 46.7 0.056 0.077 53.2 0.025 0.062 56.5 

0.09 0.052 0.03 43.9 0.073 0.059 47 0.055 0.074 53.2 0.029 0.053 56.2 

0.11 0.055 0.028 43.8 0.077 0.053 46.8 0.054 0.071 53 0.031 0.052 56.1 

0.12 0.06 0.028 43.6 0.077 0.057 46.9 0.051 0.07 53.3 0.027 0.056 56.5 

0.28 0.058 0.034 43.9 0.071 0.069 47.3 0.04 0.084 53.6 0.019 0.057 56.7 

0.28 0.057 0.027 43.6 0.082 0.05 46.8 0.053 0.074 53.2 0.023 0.054 56.5 

0.28 0.065 0.02 43.2 0.075 0.059 47 0.048 0.074 53.4 0.026 0.054 56.4 

0.31 0.064 0.028 43.6 0.07 0.061 47.1 0.05 0.077 53.2 0.033 0.049 56 

0.36 0.06 0.025 43.5 0.084 0.054 46.7 0.048 0.073 53.3 0.024 0.05 56.4 

0.39 0.071 0.026 43.3 0.073 0.07 47.1 0.04 0.08 53.6 0.028 0.044 56.1 

0.41 0.063 0.027 43.5 0.085 0.059 46.8 0.049 0.077 53.3 0.031 0.043 56 

0.5 0.057 0.032 43.7 0.081 0.062 47 0.039 0.086 53.9 0.021 0.053 56.7 

0.53 0.058 0.027 43.6 0.076 0.065 47 0.045 0.07 53.5 0.018 0.056 56.7 

0.51 0.064 0.029 43.5 0.092 0.052 46.7 0.043 0.077 53.6 0.028 0.044 56.1 

0.62 0.061 0.033 43.6 0.082 0.06 47 0.039 0.075 53.6 0.018 0.051 56.6 

0.63 0.062 0.03 43.5 0.077 0.064 47.1 0.045 0.07 53.4 0.024 0.052 56.5 

0.74 0.065 0.026 43.4 0.082 0.059 46.8 0.036 0.084 53.9 0.024 0.046 56.3 

0.78 0.069 0.025 43.3 0.088 0.059 46.8 0.041 0.07 53.5 0.018 0.046 56.7 

0.86 0.061 0.031 43.5 0.098 0.05 46.6 0.032 0.075 54 0.02 0.045 56.5 

0.72 0.053 0.032 43.7 0.086 0.069 47.1 0.038 0.077 53.7 0.019 0.046 56.5 

0.82 0.064 0.032 43.5 0.082 0.073 47.1 0.048 0.065 53.3 0.027 0.039 56.1 

0.87 0.069 0.024 43.2 0.09 0.06 46.8 0.053 0.062 53.2 0.02 0.047 56.5 

0.85 0.064 0.028 43.3 0.101 0.056 46.8 0.034 0.078 53.9 0.017 0.047 56.6 

0.92 0.062 0.036 43.8 0.091 0.07 47 0.043 0.068 53.5 0.017 0.047 56.7 

0.96 0.078 0.015 42.5 0.108 0.054 46.6 0.043 0.07 53.5 0.019 0.042 56.4 

1 0.075 0.022 43 0.092 0.068 47 0.037 0.072 53.7 0.017 0.046 56.6 

1.06 0.068 0.026 43.3 0.09 0.062 46.9 0.053 0.059 53.1 0.019 0.043 56.6 

1.15 0.064 0.03 43.4 0.096 0.063 46.9 0.041 0.067 53.6 0.024 0.044 56.3 

1.26 0.076 0.019 42.7 0.09 0.073 47.1 0.04 0.069 53.6 0.029 0.034 55.9 

1.29 0.07 0.025 43.1 0.107 0.056 46.5 0.032 0.071 54 0.018 0.04 56.4 

1.2 0.064 0.026 43.2 0.092 0.076 47.2 0.04 0.062 53.5 0.021 0.04 56.3 

1.24 0.065 0.027 43.3 0.106 0.062 46.8 0.026 0.075 54.2 0.018 0.041 56.4 

1.32 0.068 0.023 43 0.102 0.065 46.8 0.035 0.067 53.7 0.018 0.04 56.4 

1.32 0.078 0.017 42.4 0.081 0.091 47.5 0.041 0.063 53.6 0.015 0.048 56.9 

1.39 0.081 0.016 42.4 0.11 0.064 46.8 0.03 0.073 54 0.023 0.036 56.2 

1.37 0.073 0.022 42.7 0.093 0.076 47.1 0.03 0.067 53.8 0.017 0.038 56.5 

1.53 0.078 0.016 42.4 0.105 0.074 47.1 0.023 0.078 54.3 0.019 0.037 56.4 

1.47 0.075 0.014 42.4 0.108 0.075 47 0.041 0.057 53.5 0.021 0.034 56.2 
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1.44 0.07 0.018 42.5 0.102 0.084 47.2 0.041 0.053 53.5 0.012 0.045 57 

1.61 0.069 0.014 42.2 0.107 0.08 47.1 0.043 0.052 53.3 0.018 0.037 56.4 

1.72 0.074 0.01 41.7 0.105 0.088 47.3 0.031 0.061 53.8 0.022 0.033 56 

1.77 0.072 0.011 41.8 0.099 0.091 47.4 0.032 0.058 53.8 0.018 0.037 56.4 

1.68 0.066 0.017 42.2 0.086 0.107 47.7 0.025 0.065 54.1 0.011 0.043 56.8 

1.66 0.073 0.004 40.7 0.108 0.087 47.3 0.035 0.058 53.5 0.022 0.035 56.2 

1.7 0.077 0.004 40.3 0.122 0.074 47.1 0.023 0.064 54.2 0.017 0.035 56.3 

1.79 0.07 0.001 39.1 0.096 0.104 47.6 0.029 0.059 53.8 0.02 0.032 56.2 

2.07 0.061 0.002 39.9 0.092 0.106 47.8 0.035 0.053 53.6 0.019 0.031 56.2 

1.85 0.054 <.001 38.6 0.097 0.104 47.7 0.028 0.056 53.8 0.016 0.039 56.5 

1.97 0.039 <.001 38.1 0.104 0.101 47.7 0.028 0.059 53.8 0.018 0.033 56.4 

*Note: Skew, as presented in this table, is the skewness of the simulated truescores 

Table E2: Actual Error Rates at True Cutscore Location with Increasing Skewness 

 45   47.5   52.5   55   

 fp fn loc fp fn loc fp fn loc fp fn loc 

-0.03 0.03 0.058 45 0.057 0.077 47.5 0.076 0.055 52.5 0.065 0.033 55 

0.04 0.035 0.06 45 0.057 0.073 47.5 0.082 0.057 52.5 0.062 0.033 55 

0.09 0.035 0.062 45 0.059 0.077 47.5 0.08 0.054 52.5 0.063 0.034 55 

0.11 0.033 0.062 45 0.058 0.076 47.5 0.074 0.055 52.5 0.06 0.033 55 

0.12 0.035 0.064 45 0.059 0.079 47.5 0.076 0.049 52.5 0.064 0.032 55 

0.28 0.037 0.064 45 0.065 0.077 47.5 0.075 0.054 52.5 0.059 0.03 55 

0.28 0.034 0.069 45 0.064 0.073 47.5 0.076 0.055 52.5 0.059 0.03 55 

0.28 0.035 0.065 45 0.06 0.076 47.5 0.08 0.05 52.5 0.062 0.032 55 

0.31 0.04 0.063 45 0.06 0.076 47.5 0.073 0.055 52.5 0.058 0.033 55 

0.36 0.033 0.066 45 0.061 0.086 47.5 0.077 0.051 52.5 0.058 0.029 55 

0.39 0.037 0.07 45 0.061 0.086 47.5 0.076 0.052 52.5 0.056 0.029 55 

0.41 0.037 0.067 45 0.065 0.084 47.5 0.076 0.056 52.5 0.058 0.028 55 

0.5 0.033 0.067 45 0.067 0.08 47.5 0.083 0.051 52.5 0.056 0.029 55 

0.53 0.035 0.066 45 0.062 0.085 47.5 0.079 0.046 52.5 0.057 0.028 55 

0.51 0.037 0.071 45 0.067 0.081 47.5 0.082 0.047 52.5 0.056 0.028 55 

0.62 0.037 0.071 45 0.067 0.078 47.5 0.076 0.049 52.5 0.054 0.028 55 

0.63 0.036 0.071 45 0.066 0.08 47.5 0.072 0.049 52.5 0.057 0.029 55 

0.74 0.034 0.074 45 0.061 0.085 47.5 0.08 0.049 52.5 0.058 0.028 55 

0.78 0.037 0.073 45 0.065 0.086 47.5 0.077 0.047 52.5 0.052 0.024 55 

0.86 0.037 0.076 45 0.072 0.083 47.5 0.078 0.044 52.5 0.052 0.025 55 

0.72 0.033 0.07 45 0.072 0.086 47.5 0.079 0.048 52.5 0.053 0.027 55 

0.82 0.038 0.077 45 0.07 0.089 47.5 0.075 0.046 52.5 0.049 0.025 55 

0.87 0.037 0.074 45 0.068 0.086 47.5 0.079 0.045 52.5 0.052 0.026 55 

0.85 0.036 0.077 45 0.075 0.086 47.5 0.08 0.044 52.5 0.053 0.025 55 

0.92 0.036 0.074 45 0.072 0.092 47.5 0.077 0.044 52.5 0.051 0.025 55 

0.96 0.035 0.078 45 0.076 0.089 47.5 0.075 0.048 52.5 0.048 0.024 55 

1 0.04 0.078 45 0.075 0.089 47.5 0.075 0.046 52.5 0.046 0.025 55 

1.06 0.037 0.076 45 0.072 0.086 47.5 0.073 0.046 52.5 0.054 0.025 55 
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1.15 0.037 0.078 45 0.076 0.086 47.5 0.074 0.042 52.5 0.051 0.025 55 

1.26 0.036 0.081 45 0.077 0.088 47.5 0.079 0.046 52.5 0.049 0.025 55 

1.29 0.035 0.084 45 0.075 0.094 47.5 0.078 0.037 52.5 0.046 0.024 55 

1.2 0.034 0.083 45 0.08 0.089 47.5 0.071 0.04 52.5 0.046 0.025 55 

1.24 0.037 0.083 45 0.08 0.092 47.5 0.075 0.04 52.5 0.047 0.024 55 

1.32 0.033 0.08 45 0.077 0.094 47.5 0.07 0.042 52.5 0.042 0.024 55 

1.32 0.039 0.089 45 0.081 0.091 47.5 0.073 0.04 52.5 0.049 0.025 55 

1.39 0.039 0.091 45 0.085 0.092 47.5 0.071 0.043 52.5 0.044 0.022 55 

1.37 0.034 0.09 45 0.078 0.095 47.5 0.07 0.039 52.5 0.046 0.021 55 

1.53 0.037 0.09 45 0.089 0.093 47.5 0.071 0.041 52.5 0.043 0.023 55 

1.47 0.037 0.09 45 0.089 0.1 47.5 0.071 0.038 52.5 0.046 0.022 55 

1.44 0.034 0.094 45 0.092 0.099 47.5 0.07 0.034 52.5 0.048 0.022 55 

1.61 0.031 0.091 45 0.091 0.098 47.5 0.068 0.038 52.5 0.041 0.022 55 

1.72 0.032 0.097 45 0.098 0.097 47.5 0.07 0.036 52.5 0.04 0.023 55 

1.77 0.033 0.102 45 0.095 0.096 47.5 0.071 0.036 52.5 0.044 0.021 55 

1.68 0.032 0.106 45 0.095 0.098 47.5 0.068 0.037 52.5 0.04 0.021 55 

1.66 0.029 0.103 45 0.099 0.098 47.5 0.068 0.038 52.5 0.044 0.021 55 

1.7 0.033 0.105 45 0.104 0.092 47.5 0.065 0.035 52.5 0.039 0.02 55 

1.79 0.029 0.114 45 0.101 0.1 47.5 0.064 0.033 52.5 0.038 0.021 55 

2.07 0.026 0.115 45 0.106 0.093 47.5 0.066 0.033 52.5 0.04 0.019 55 

1.85 0.025 0.127 45 0.108 0.094 47.5 0.061 0.034 52.5 0.042 0.022 55 

1.97 0.017 0.126 45 0.114 0.093 47.5 0.064 0.036 52.5 0.04 0.02 55 

*Note: Skew, as presented in this table, is the skewness of the simulated truescores 

Table E3: GW-CSOF Estimate of Location of & Error at Optimal Cutscore with Increasing 

Skewness 

 45   47.5   52.5   55   

 fp fn loc fp fn loc fp fn loc fp fn loc 

-0.03 0.056 0.028 43.7 0.076 0.052 46.8 0.055 0.075 53.1 0.031 0.057 56.2 

0.04 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

0.09 0.057 0.029 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.056 56.2 

0.11 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

0.12 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.058 56.3 

0.28 0.056 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 

0.28 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.074 53.1 0.03 0.055 56.2 

0.28 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

0.31 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

0.36 0.056 0.03 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 

0.39 0.057 0.031 43.8 0.075 0.055 46.9 0.051 0.075 53.2 0.028 0.055 56.3 

0.41 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.074 53.1 0.03 0.056 56.2 

0.5 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

0.53 0.057 0.029 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

0.51 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 
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0.62 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.058 56.3 

0.63 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

0.74 0.056 0.029 43.7 0.076 0.052 46.8 0.056 0.075 53.1 0.032 0.058 56.2 

0.78 0.057 0.032 43.8 0.075 0.056 46.9 0.055 0.073 53.1 0.029 0.057 56.3 

0.86 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.057 56.2 

0.72 0.056 0.028 43.7 0.073 0.054 46.9 0.055 0.074 53.1 0.03 0.055 56.2 

0.82 0.056 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 

0.87 0.057 0.029 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

0.85 0.055 0.03 43.8 0.074 0.055 46.9 0.054 0.073 53.1 0.027 0.056 56.3 

0.92 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

0.96 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

1 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.073 53.1 0.028 0.057 56.3 

1.06 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

1.15 0.056 0.029 43.7 0.075 0.052 46.8 0.056 0.076 53.1 0.032 0.058 56.2 

1.26 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

1.29 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.057 56.2 

1.2 0.057 0.028 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.056 56.2 

1.24 0.055 0.03 43.8 0.074 0.055 46.9 0.054 0.073 53.1 0.028 0.056 56.3 

1.32 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

1.32 0.057 0.028 43.7 0.073 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

1.39 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 

1.37 0.056 0.03 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 

1.53 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

1.47 0.056 0.03 43.8 0.074 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 

1.44 0.057 0.028 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.03 0.055 56.2 

1.61 0.057 0.029 43.7 0.076 0.052 46.8 0.056 0.075 53.1 0.032 0.058 56.2 

1.72 0.057 0.031 43.8 0.075 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

1.77 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

1.68 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

1.66 0.056 0.028 43.7 0.076 0.052 46.8 0.055 0.075 53.1 0.031 0.058 56.2 

1.7 0.056 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

1.79 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

2.07 0.058 0.029 43.7 0.074 0.055 46.9 0.056 0.075 53.1 0.032 0.057 56.2 

1.85 0.056 0.03 43.8 0.075 0.055 46.9 0.054 0.073 53.1 0.028 0.056 56.3 

1.97 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

*Note: Skew, as presented in this table, is the skewness of the simulated truescores 

Table E4: GW-CSOF Error Rates at True Cutscore Location with Increasing Skewness 

 45   47.5   52.5   55   

 fp fn loc fp fn loc fp fn loc fp fn loc 

-0.03 0.034 0.061 45 0.056 0.075 47.5 0.076 0.058 52.5 0.063 0.036 55 

0.04 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

0.09 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

0.11 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 
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0.12 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

0.28 0.035 0.062 45 0.057 0.076 47.5 0.075 0.056 52.5 0.061 0.034 55 

0.28 0.034 0.061 45 0.056 0.075 47.5 0.076 0.057 52.5 0.061 0.034 55 

0.28 0.034 0.061 45 0.056 0.075 47.5 0.076 0.058 52.5 0.062 0.035 55 

0.31 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

0.36 0.035 0.061 45 0.057 0.076 47.5 0.075 0.056 52.5 0.06 0.033 55 

0.39 0.035 0.062 45 0.058 0.076 47.5 0.075 0.056 52.5 0.06 0.033 55 

0.41 0.033 0.06 45 0.056 0.075 47.5 0.076 0.057 52.5 0.061 0.034 55 

0.5 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

0.53 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

0.51 0.034 0.061 45 0.057 0.076 47.5 0.075 0.056 52.5 0.06 0.033 55 

0.62 0.035 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.035 55 

0.63 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

0.74 0.034 0.061 45 0.056 0.075 47.5 0.076 0.058 52.5 0.063 0.036 55 

0.78 0.036 0.063 45 0.058 0.076 47.5 0.076 0.056 52.5 0.061 0.034 55 

0.86 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

0.72 0.033 0.06 45 0.056 0.075 47.5 0.076 0.057 52.5 0.061 0.034 55 

0.82 0.035 0.062 45 0.057 0.076 47.5 0.075 0.056 52.5 0.061 0.034 55 

0.87 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

0.85 0.034 0.061 45 0.057 0.076 47.5 0.075 0.056 52.5 0.06 0.033 55 

0.92 0.034 0.061 45 0.057 0.076 47.5 0.076 0.056 52.5 0.061 0.034 55 

0.96 0.034 0.061 45 0.057 0.076 47.5 0.076 0.056 52.5 0.061 0.034 55 

1 0.035 0.062 45 0.057 0.076 47.5 0.076 0.056 52.5 0.061 0.034 55 

1.06 0.033 0.06 45 0.056 0.075 47.5 0.076 0.057 52.5 0.062 0.035 55 

1.15 0.034 0.061 45 0.056 0.075 47.5 0.076 0.058 52.5 0.063 0.036 55 

1.26 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

1.29 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

1.2 0.034 0.061 45 0.056 0.075 47.5 0.076 0.057 52.5 0.062 0.035 55 

1.24 0.034 0.061 45 0.057 0.076 47.5 0.075 0.056 52.5 0.06 0.033 55 

1.32 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.035 55 

1.32 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.061 0.035 55 

1.39 0.035 0.062 45 0.057 0.076 47.5 0.075 0.056 52.5 0.061 0.034 55 

1.37 0.035 0.062 45 0.057 0.076 47.5 0.075 0.056 52.5 0.06 0.033 55 

1.53 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

1.47 0.034 0.061 45 0.057 0.076 47.5 0.075 0.056 52.5 0.061 0.034 55 

1.44 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

1.61 0.034 0.061 45 0.056 0.075 47.5 0.076 0.058 52.5 0.063 0.036 55 

1.72 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

1.77 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

1.68 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

1.66 0.034 0.061 45 0.056 0.075 47.5 0.076 0.058 52.5 0.063 0.036 55 

1.7 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

1.79 0.035 0.061 45 0.057 0.076 47.5 0.076 0.058 52.5 0.062 0.035 55 

2.07 0.035 0.062 45 0.057 0.076 47.5 0.076 0.058 52.5 0.062 0.036 55 

1.85 0.035 0.061 45 0.057 0.076 47.5 0.075 0.056 52.5 0.06 0.033 55 
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1.97 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

*Note: Skew, as presented in this table, is the skewness of the simulated truescores 
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Appendix F: Bimodal Results 

Table F1:Error Rates and Location of Actual Optimal Cutscore with Increasing Skewness 

 45   47.5   52.5   55   
TS D fp fn loc fp fn loc fp fn loc fp fn loc 

0.8 0.06 0.036 44 0.061 0.063 47.4 0.046 0.084 53.3 0.033 0.063 56.2 

2.8 0.06 0.036 44 0.072 0.055 47.1 0.066 0.06 52.6 0.035 0.054 56 

3.1 0.063 0.034 43.8 0.064 0.061 47.3 0.053 0.071 52.8 0.026 0.066 56.4 

3 0.062 0.031 43.9 0.061 0.066 47.5 0.058 0.065 52.8 0.04 0.061 56 

4.9 0.06 0.036 44 0.068 0.056 47.1 0.047 0.075 53.1 0.044 0.047 55.5 

6.9 0.066 0.027 43.7 0.065 0.06 47.4 0.066 0.064 52.6 0.032 0.066 56.2 

4.4 0.066 0.028 43.7 0.069 0.054 47.2 0.053 0.073 52.9 0.031 0.064 56.1 

5.2 0.062 0.038 44.1 0.064 0.061 47.4 0.051 0.067 52.9 0.034 0.062 56.1 

5.7 0.056 0.046 44.4 0.07 0.055 47.2 0.065 0.061 52.5 0.04 0.065 56 

6 0.067 0.036 44 0.066 0.052 47.4 0.054 0.073 52.9 0.034 0.061 56 

3.3 0.061 0.044 44.3 0.064 0.063 47.4 0.052 0.075 53 0.045 0.055 55.6 

5.9 0.062 0.039 44.1 0.057 0.066 47.7 0.053 0.072 52.7 0.043 0.062 55.8 

7.7 0.056 0.044 44.4 0.074 0.052 47.2 0.056 0.066 52.8 0.039 0.06 55.9 

5.6 0.059 0.043 44.3 0.066 0.057 47.3 0.06 0.062 52.5 0.034 0.064 56 

5.4 0.073 0.029 43.6 0.05 0.07 47.9 0.049 0.077 53 0.026 0.077 56.5 

8.2 0.066 0.038 44 0.057 0.067 47.7 0.053 0.07 52.8 0.04 0.064 55.9 

8.5 0.055 0.051 44.5 0.053 0.067 47.8 0.064 0.059 52.3 0.037 0.065 55.9 

8.1 0.057 0.05 44.4 0.06 0.057 47.5 0.061 0.065 52.4 0.04 0.07 56 

7.6 0.064 0.038 44 0.069 0.048 47.3 0.062 0.06 52.3 0.046 0.06 55.6 

8.1 0.076 0.039 43.9 0.06 0.059 47.6 0.064 0.056 52.2 0.036 0.069 56.1 

7.9 0.061 0.041 44.2 0.056 0.063 47.8 0.048 0.068 52.8 0.058 0.051 55.2 

7.3 0.069 0.041 44.1 0.063 0.06 47.6 0.063 0.061 52.2 0.047 0.064 55.6 

9.3 0.076 0.036 43.9 0.053 0.066 48 0.06 0.059 52.3 0.054 0.06 55.5 

7.3 0.064 0.051 44.4 0.047 0.069 48.2 0.064 0.061 52.2 0.035 0.079 56.2 

8.1 0.079 0.039 43.9 0.044 0.07 48.2 0.062 0.052 51.9 0.038 0.078 56.1 

9.4 0.078 0.039 43.9 0.058 0.061 47.8 0.06 0.052 52 0.042 0.074 56 

8.4 0.067 0.047 44.2 0.052 0.061 48 0.059 0.057 52 0.06 0.057 55.3 

8.4 0.076 0.043 44.2 0.053 0.064 48 0.064 0.052 51.9 0.039 0.083 56 

8.4 0.066 0.056 44.5 0.055 0.059 48 0.056 0.055 52.1 0.047 0.069 55.8 

7.7 0.076 0.045 44.2 0.044 0.069 48.5 0.065 0.047 51.7 0.055 0.067 55.5 

8.1 0.081 0.045 44 0.059 0.051 47.8 0.068 0.051 51.7 0.047 0.077 55.7 

7.7 0.071 0.056 44.4 0.056 0.056 48.2 0.06 0.05 51.9 0.051 0.074 55.7 

8.3 0.067 0.062 44.8 0.045 0.061 48.5 0.061 0.042 51.5 0.063 0.066 55.3 

8.7 0.083 0.046 44 0.031 0.073 48.9 0.06 0.041 51.5 0.048 0.08 55.7 

8.1 0.075 0.058 44.5 0.049 0.049 48.2 0.064 0.041 51.4 0.056 0.075 55.6 

8.9 0.079 0.058 44.3 0.036 0.059 48.8 0.058 0.035 51.1 0.061 0.076 55.5 

9.1 0.091 0.05 44 0.039 0.058 48.8 0.058 0.033 51.1 0.057 0.08 55.6 

8.3 0.087 0.06 44.3 0.038 0.058 48.9 0.058 0.039 51.1 0.077 0.069 55 

10 0.078 0.059 44.4 0.03 0.058 49.2 0.05 0.038 51.2 0.061 0.077 55.5 
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9.1 0.086 0.058 44.3 0.037 0.047 48.9 0.052 0.031 50.8 0.057 0.089 55.8 

10.2 0.07 0.083 45 0.027 0.052 49.4 0.058 0.022 50.3 0.045 0.105 56.2 

9.5 0.108 0.051 43.8 0.023 0.056 49.7 0.047 0.026 50.5 0.066 0.087 55.6 

10 0.085 0.075 44.6 0.026 0.041 49.5 0.046 0.023 50.4 0.06 0.091 55.8 

9.7 0.098 0.064 44.3 0.025 0.036 49.6 0.037 0.023 50.3 0.077 0.087 55.4 

9.9 0.094 0.076 44.7 0.017 0.036 49.9 0.034 0.018 50.1 0.08 0.087 55.2 

9.7 0.112 0.065 44.2 0.016 0.03 50 0.028 0.017 50 0.084 0.093 55.4 

10.1 0.092 0.091 44.8 0.02 0.022 49.8 0.024 0.016 49.9 0.067 0.113 55.8 

10.1 0.099 0.093 44.8 0.018 0.016 49.7 0.022 0.014 49.7 0.069 0.127 55.9 

10 0.141 0.062 43.7 0.012 0.015 50.1 0.012 0.014 50.1 0.096 0.104 55.2 

9.9 0.165 0.047 43.2 0.016 0.009 49.7 0.016 0.009 49.7 0.123 0.088 54.6 
 

Table F2: Actual Error Rates at True Cutscore Location with Increasing Bimodality 

 45   47.5   52.5   55   
TS D fp fn loc fp fn loc fp fn loc fp fn loc 

0.8 0.04 0.061 45 0.058 0.067 47.5 0.072 0.061 52.5 0.064 0.039 55 

2.8 0.039 0.064 45 0.061 0.069 47.5 0.07 0.056 52.5 0.062 0.036 55 

3.1 0.041 0.065 45 0.058 0.068 47.5 0.064 0.062 52.5 0.063 0.041 55 

3 0.04 0.063 45 0.061 0.066 47.5 0.069 0.056 52.5 0.068 0.042 55 

4.9 0.04 0.062 45 0.056 0.07 47.5 0.068 0.058 52.5 0.058 0.038 55 

6.9 0.041 0.061 45 0.063 0.064 47.5 0.07 0.061 52.5 0.064 0.042 55 

4.4 0.042 0.061 45 0.061 0.064 47.5 0.067 0.06 52.5 0.062 0.041 55 

5.2 0.044 0.063 45 0.061 0.064 47.5 0.065 0.057 52.5 0.064 0.041 55 

5.7 0.044 0.062 45 0.062 0.066 47.5 0.065 0.061 52.5 0.065 0.044 55 

6 0.044 0.062 45 0.062 0.056 47.5 0.066 0.062 52.5 0.06 0.042 55 

3.3 0.047 0.064 45 0.061 0.066 47.5 0.068 0.061 52.5 0.064 0.043 55 

5.9 0.044 0.062 45 0.063 0.062 47.5 0.061 0.066 52.5 0.065 0.046 55 

7.7 0.044 0.061 45 0.065 0.064 47.5 0.066 0.059 52.5 0.061 0.044 55 

5.6 0.042 0.063 45 0.06 0.063 47.5 0.06 0.062 52.5 0.065 0.045 55 

5.4 0.043 0.067 45 0.063 0.058 47.5 0.065 0.064 52.5 0.063 0.045 55 

8.2 0.045 0.066 45 0.063 0.062 47.5 0.062 0.063 52.5 0.065 0.045 55 

8.5 0.045 0.066 45 0.062 0.059 47.5 0.059 0.065 52.5 0.062 0.045 55 

8.1 0.043 0.068 45 0.06 0.057 47.5 0.059 0.069 52.5 0.067 0.048 55 

7.6 0.042 0.065 45 0.062 0.056 47.5 0.057 0.066 52.5 0.066 0.045 55 

8.1 0.048 0.071 45 0.063 0.057 47.5 0.057 0.066 52.5 0.063 0.045 55 

7.9 0.045 0.067 45 0.065 0.055 47.5 0.059 0.06 52.5 0.065 0.046 55 

7.3 0.046 0.068 45 0.066 0.058 47.5 0.054 0.07 52.5 0.064 0.051 55 

9.3 0.05 0.064 45 0.07 0.054 47.5 0.055 0.065 52.5 0.07 0.047 55 

7.3 0.049 0.068 45 0.069 0.051 47.5 0.056 0.07 52.5 0.068 0.05 55 

8.1 0.05 0.07 45 0.068 0.051 47.5 0.048 0.07 52.5 0.071 0.051 55 

9.4 0.05 0.075 45 0.067 0.053 47.5 0.048 0.068 52.5 0.072 0.05 55 

8.4 0.049 0.072 45 0.068 0.049 47.5 0.046 0.073 52.5 0.071 0.049 55 

8.4 0.057 0.069 45 0.07 0.051 47.5 0.05 0.071 52.5 0.068 0.057 55 
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8.4 0.053 0.074 45 0.071 0.048 47.5 0.045 0.07 52.5 0.073 0.049 55 

7.7 0.056 0.07 45 0.072 0.046 47.5 0.045 0.074 52.5 0.071 0.055 55 

8.1 0.057 0.076 45 0.07 0.045 47.5 0.048 0.075 52.5 0.07 0.058 55 

7.7 0.056 0.076 45 0.079 0.043 47.5 0.046 0.07 52.5 0.073 0.056 55 

8.3 0.062 0.069 45 0.079 0.04 47.5 0.039 0.077 52.5 0.073 0.058 55 

8.7 0.057 0.079 45 0.074 0.04 47.5 0.037 0.075 52.5 0.07 0.06 55 

8.1 0.061 0.072 45 0.075 0.035 47.5 0.04 0.075 52.5 0.078 0.059 55 

8.9 0.06 0.079 45 0.079 0.032 47.5 0.031 0.08 52.5 0.076 0.062 55 

9.1 0.062 0.082 45 0.079 0.033 47.5 0.031 0.085 52.5 0.077 0.062 55 

8.3 0.066 0.084 45 0.079 0.033 47.5 0.033 0.084 52.5 0.077 0.069 55 

10 0.063 0.08 45 0.084 0.027 47.5 0.027 0.082 52.5 0.079 0.064 55 

9.1 0.067 0.084 45 0.085 0.025 47.5 0.026 0.085 52.5 0.085 0.064 55 

10.2 0.07 0.083 45 0.086 0.022 47.5 0.023 0.087 52.5 0.086 0.068 55 

9.5 0.072 0.091 45 0.09 0.022 47.5 0.02 0.09 52.5 0.088 0.07 55 

10 0.073 0.088 45 0.089 0.017 47.5 0.019 0.088 52.5 0.091 0.067 55 

9.7 0.078 0.09 45 0.093 0.012 47.5 0.012 0.089 52.5 0.091 0.076 55 

9.9 0.085 0.087 45 0.093 0.011 47.5 0.011 0.09 52.5 0.088 0.081 55 

9.7 0.086 0.094 45 0.091 0.007 47.5 0.006 0.093 52.5 0.1 0.081 55 

10.1 0.086 0.1 45 0.089 0.005 47.5 0.005 0.09 52.5 0.099 0.088 55 

10.1 0.091 0.102 45 0.086 0.002 47.5 0.002 0.095 52.5 0.104 0.097 55 

10 0.095 0.113 45 0.083 0.001 47.5 0.001 0.086 52.5 0.104 0.097 55 

9.9 0.103 0.115 45 0.083 0.001 47.5 0.001 0.082 52.5 0.109 0.103 55 
 

Table F3: GW-CSOF Estimate of Error at & Location of Optimal Cutscore with Increasing 

Bimodality 

 45   47.5   52.5   55   
TS D fp fn loc fp fn loc fp fn loc fp fn loc 

0.8 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

2.8 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.058 56.3 

3.1 0.056 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 

3 0.056 0.028 43.7 0.075 0.052 46.8 0.055 0.075 53.1 0.031 0.057 56.2 

4.9 0.056 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.03 0.055 56.2 

6.9 0.057 0.028 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.057 56.2 

4.4 0.057 0.028 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.056 56.3 

5.2 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

5.7 0.057 0.028 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

6 0.057 0.028 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

3.3 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

5.9 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

7.7 0.057 0.029 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.056 56.2 

5.6 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

5.4 0.057 0.028 43.7 0.073 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 
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8.2 0.057 0.028 43.7 0.073 0.055 46.9 0.055 0.074 53.1 0.03 0.055 56.2 

8.5 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

8.1 0.056 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.029 0.058 56.3 

7.6 0.056 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

8.1 0.056 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.03 0.055 56.2 

7.9 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.058 56.3 

7.3 0.056 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.031 0.056 56.2 

9.3 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.029 0.057 56.3 

7.3 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

8.1 0.057 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.031 0.056 56.2 

9.4 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

8.4 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

8.4 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

8.4 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

7.7 0.057 0.029 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.029 0.057 56.3 

8.1 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

7.7 0.057 0.028 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.056 56.2 

8.3 0.057 0.028 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.03 0.056 56.2 

8.7 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

8.1 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

8.9 0.056 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.029 0.058 56.3 

9.1 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

8.3 0.056 0.03 43.8 0.074 0.055 46.9 0.055 0.073 53.1 0.031 0.056 56.2 

10 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

9.1 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

10.2 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

9.5 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

10 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.058 56.3 

9.7 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

9.9 0.057 0.028 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

9.7 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

10.1 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

10.1 0.056 0.03 43.8 0.074 0.055 46.9 0.055 0.073 53.1 0.029 0.057 56.3 

10 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.03 0.056 56.2 

9.9 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 
 

Table F4: GW-CSOF Error Rates at True Cutscore Location with Increasing Bimodality 

 45   47.5   52.5   55   

 fp fn loc fp fn loc fp fn loc fp fn loc 

0.8 0.034 0.061 45 0.056 0.075 47.5 0.076 0.058 52.5 0.062 0.035 55 

2.8 0.035 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

3.1 0.035 0.062 45 0.057 0.076 47.5 0.075 0.056 52.5 0.061 0.034 55 

3 0.033 0.06 45 0.056 0.075 47.5 0.076 0.058 52.5 0.062 0.035 55 
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4.9 0.035 0.062 45 0.057 0.076 47.5 0.076 0.056 52.5 0.061 0.034 55 

6.9 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

4.4 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.06 0.033 55 

5.2 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

5.7 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

6 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

3.3 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

5.9 0.035 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

7.7 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.061 0.035 55 

5.6 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.035 55 

5.4 0.034 0.061 45 0.056 0.075 47.5 0.076 0.057 52.5 0.061 0.034 55 

8.2 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

8.5 0.035 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

8.1 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

7.6 0.034 0.061 45 0.057 0.076 47.5 0.076 0.056 52.5 0.061 0.034 55 

8.1 0.035 0.062 45 0.057 0.076 47.5 0.076 0.056 52.5 0.061 0.034 55 

7.9 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.035 55 

7.3 0.035 0.062 45 0.057 0.076 47.5 0.075 0.056 52.5 0.061 0.034 55 

9.3 0.033 0.06 45 0.056 0.075 47.5 0.076 0.057 52.5 0.061 0.034 55 

7.3 0.034 0.061 45 0.056 0.075 47.5 0.076 0.057 52.5 0.062 0.035 55 

8.1 0.036 0.062 45 0.058 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

9.4 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

8.4 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

8.4 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

8.4 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

7.7 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

8.1 0.035 0.061 45 0.057 0.076 47.5 0.076 0.056 52.5 0.062 0.035 55 

7.7 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

8.3 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

8.7 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

8.1 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

8.9 0.035 0.062 45 0.057 0.076 47.5 0.075 0.056 52.5 0.062 0.035 55 

9.1 0.035 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

8.3 0.034 0.061 45 0.057 0.076 47.5 0.075 0.056 52.5 0.061 0.035 55 

10 0.035 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

9.1 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.035 55 

10.2 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

9.5 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

10 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

9.7 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

9.9 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

9.7 0.035 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

10.1 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

10.1 0.034 0.061 45 0.057 0.076 47.5 0.075 0.056 52.5 0.061 0.035 55 

10 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.035 55 
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9.9 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

 



81 
 



82 
 



83 
 



84 
 



85 
 



86 
 



87 
 



88 
 



89 
 



90 
 



91 
 



92 
 



93 
 



94 
 



95 
 



96 
 



97 
 



98 
 



99 
 



100 
 



101 
 



102 
 



103 
 



104 
 

 

 

  



105 
 

Appendix G: Kurtosis Results 

Table G1: Error Rates and Location of Actual Optimal Cutscore with Increasing Kurtosis 

 45   47.5   52.5   55   

 fp fn loc fp fn loc fp fn loc fp fn loc 

3.03 0.052 0.024 43.6 0.076 0.054 46.8 0.059 0.069 53 0.021 0.063 56.8 

3.14 0.056 0.03 43.8 0.076 0.054 46.8 0.061 0.065 52.9 0.03 0.054 56.2 

3.11 0.063 0.025 43.4 0.08 0.052 46.7 0.053 0.075 53.1 0.023 0.06 56.6 

3.12 0.053 0.029 43.8 0.078 0.047 46.7 0.058 0.076 53.2 0.03 0.061 56.4 

3.31 0.06 0.025 43.4 0.074 0.054 46.9 0.046 0.079 53.3 0.021 0.061 56.6 

3.28 0.056 0.019 43.2 0.078 0.049 46.7 0.052 0.074 53.2 0.033 0.055 56 

3.31 0.058 0.028 43.6 0.088 0.04 46.3 0.056 0.072 53.1 0.031 0.055 56.2 

3.39 0.059 0.025 43.4 0.068 0.062 47.1 0.052 0.08 53.3 0.028 0.052 56.3 

3.39 0.058 0.021 43.4 0.087 0.048 46.4 0.051 0.081 53.3 0.023 0.058 56.6 

3.53 0.053 0.029 43.7 0.076 0.058 46.9 0.044 0.088 53.6 0.022 0.057 56.7 

3.49 0.056 0.025 43.5 0.09 0.041 46.4 0.053 0.078 53.3 0.024 0.056 56.5 

3.61 0.049 0.028 43.7 0.088 0.045 46.4 0.059 0.07 53 0.028 0.053 56.2 

3.58 0.054 0.023 43.6 0.085 0.045 46.5 0.063 0.073 53 0.027 0.054 56.4 

3.82 0.042 0.033 44 0.079 0.054 46.7 0.06 0.069 53.2 0.021 0.051 56.6 

3.67 0.06 0.016 43.1 0.073 0.057 46.9 0.055 0.076 53.2 0.026 0.055 56.4 

3.9 0.048 0.026 43.7 0.083 0.047 46.4 0.046 0.084 53.6 0.02 0.052 56.8 

3.9 0.05 0.021 43.5 0.092 0.046 46.2 0.051 0.077 53.4 0.018 0.053 56.9 

4.08 0.047 0.026 43.6 0.087 0.044 46.2 0.056 0.075 53.2 0.021 0.052 56.7 

4.01 0.056 0.017 43.1 0.101 0.034 45.8 0.044 0.079 53.6 0.017 0.055 57 

4.15 0.046 0.025 43.6 0.094 0.041 46.2 0.038 0.091 53.8 0.016 0.053 56.8 

4.08 0.048 0.026 43.5 0.081 0.047 46.4 0.049 0.074 53.5 0.021 0.05 56.8 

4.21 0.051 0.02 43.3 0.087 0.046 46.3 0.047 0.082 53.5 0.017 0.049 57 

4.63 0.046 0.019 43.3 0.079 0.047 46.4 0.065 0.069 53.2 0.015 0.053 57.1 

4.39 0.048 0.016 43.1 0.097 0.034 45.9 0.038 0.092 53.9 0.017 0.053 57 

4.47 0.041 0.027 43.7 0.081 0.054 46.4 0.046 0.078 53.6 0.018 0.045 56.7 

4.54 0.049 0.016 42.9 0.089 0.037 46.1 0.045 0.083 53.7 0.021 0.047 56.6 

4.69 0.051 0.014 42.8 0.081 0.055 46.4 0.045 0.079 53.7 0.018 0.042 56.7 

4.59 0.042 0.018 43.4 0.094 0.033 45.7 0.054 0.071 53.4 0.022 0.043 56.6 

4.98 0.041 0.017 43.2 0.088 0.038 46 0.048 0.079 53.6 0.012 0.049 57.3 

5.02 0.038 0.016 43.2 0.086 0.036 45.9 0.041 0.084 53.9 0.02 0.04 56.8 

4.81 0.042 0.024 43.5 0.08 0.048 46.3 0.052 0.071 53.6 0.024 0.038 56.3 

4.8 0.04 0.02 43.5 0.076 0.046 46.3 0.043 0.087 54.1 0.018 0.043 56.8 

4.86 0.042 0.016 43.2 0.079 0.039 46 0.032 0.092 54.5 0.017 0.041 56.7 

4.85 0.039 0.016 43.1 0.089 0.027 45.4 0.047 0.078 53.8 0.018 0.041 56.7 

4.97 0.04 0.021 43.6 0.067 0.049 46.3 0.028 0.092 54.5 0.015 0.042 57 

5.1 0.041 0.013 43 0.086 0.034 45.6 0.039 0.077 54.1 0.014 0.039 56.8 

5.24 0.035 0.02 43.4 0.084 0.034 45.7 0.032 0.082 54.4 0.013 0.04 56.9 

5.14 0.036 0.017 43.5 0.086 0.032 45.6 0.032 0.084 54.5 0.01 0.046 57.3 

5.44 0.039 0.014 43.1 0.079 0.026 45.3 0.028 0.087 54.7 0.016 0.036 56.6 
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5.31 0.039 0.016 43.2 0.079 0.03 45.5 0.03 0.075 54.5 0.019 0.033 56.6 

5.4 0.034 0.017 43.5 0.077 0.028 45.3 0.025 0.084 54.9 0.009 0.042 57.3 

5.26 0.036 0.015 43.3 0.071 0.026 45.2 0.02 0.084 55.1 0.016 0.035 56.6 

5.57 0.034 0.012 43.2 0.071 0.026 45.2 0.027 0.074 54.7 0.015 0.034 56.6 

5.82 0.035 0.011 43.1 0.07 0.021 45 0.022 0.069 55 0.016 0.032 56.4 

5.68 0.031 0.018 43.8 0.071 0.023 45 0.028 0.065 54.6 0.01 0.038 56.9 

6.08 0.034 0.012 43.3 0.058 0.032 45.5 0.025 0.06 54.8 0.012 0.036 56.7 

5.67 0.032 0.019 43.8 0.064 0.021 45 0.028 0.058 54.7 0.014 0.033 56.5 

5.96 0.036 0.011 43.2 0.062 0.022 45.2 0.021 0.059 54.8 0.011 0.033 56.5 

5.74 0.036 0.011 43.2 0.061 0.019 45 0.017 0.058 55.1 0.01 0.035 56.8 

6.03 0.027 0.015 43.7 0.052 0.023 45.3 0.022 0.059 54.7 0.015 0.033 56.2 

 

 

Table G2: Actual Error Rates at True Cutscore Location with Increasing Kurtosis 

 45   47.5   52.5   55   

 fp fn loc fp fn loc fp fn loc fp fn loc 

3.03 0.03 0.058 45 0.057 0.077 47.5 0.076 0.055 52.5 0.065 0.033 55 

3.14 0.035 0.061 45 0.056 0.079 47.5 0.074 0.054 52.5 0.065 0.035 55 

3.11 0.034 0.064 45 0.059 0.078 47.5 0.074 0.057 52.5 0.062 0.033 55 

3.12 0.033 0.062 45 0.056 0.075 47.5 0.081 0.056 52.5 0.066 0.034 55 

3.31 0.034 0.063 45 0.058 0.075 47.5 0.075 0.055 52.5 0.061 0.036 55 

3.28 0.03 0.063 45 0.056 0.078 47.5 0.075 0.054 52.5 0.06 0.035 55 

3.31 0.035 0.062 45 0.054 0.078 47.5 0.076 0.057 52.5 0.061 0.034 55 

3.39 0.034 0.061 45 0.057 0.075 47.5 0.081 0.057 52.5 0.061 0.031 55 

3.39 0.03 0.059 45 0.06 0.086 47.5 0.082 0.058 52.5 0.062 0.033 55 

3.53 0.032 0.063 45 0.059 0.08 47.5 0.081 0.055 52.5 0.063 0.031 55 

3.49 0.032 0.066 45 0.059 0.079 47.5 0.081 0.056 52.5 0.063 0.03 55 

3.61 0.03 0.062 45 0.056 0.085 47.5 0.078 0.057 52.5 0.059 0.035 55 

3.58 0.03 0.057 45 0.057 0.08 47.5 0.084 0.059 52.5 0.062 0.033 55 

3.82 0.028 0.061 45 0.058 0.082 47.5 0.086 0.053 52.5 0.063 0.027 55 

3.67 0.031 0.06 45 0.057 0.082 47.5 0.078 0.056 52.5 0.063 0.034 55 

3.9 0.028 0.06 45 0.052 0.086 47.5 0.084 0.056 52.5 0.064 0.025 55 

3.9 0.028 0.056 45 0.056 0.094 47.5 0.083 0.051 52.5 0.06 0.026 55 

4.08 0.026 0.063 45 0.051 0.092 47.5 0.081 0.057 52.5 0.062 0.03 55 

4.01 0.028 0.066 45 0.053 0.094 47.5 0.085 0.051 52.5 0.057 0.026 55 

4.15 0.027 0.06 45 0.059 0.087 47.5 0.085 0.056 52.5 0.052 0.028 55 

4.08 0.028 0.062 45 0.05 0.085 47.5 0.089 0.049 52.5 0.063 0.024 55 

4.21 0.027 0.062 45 0.053 0.091 47.5 0.086 0.056 52.5 0.06 0.025 55 

4.63 0.024 0.056 45 0.051 0.09 47.5 0.092 0.052 52.5 0.063 0.025 55 

4.39 0.024 0.058 45 0.052 0.091 47.5 0.089 0.053 52.5 0.061 0.027 55 

4.47 0.024 0.063 45 0.054 0.095 47.5 0.088 0.049 52.5 0.06 0.023 55 

4.54 0.023 0.06 45 0.053 0.087 47.5 0.09 0.052 52.5 0.057 0.025 55 
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4.69 0.023 0.062 45 0.052 0.095 47.5 0.091 0.05 52.5 0.06 0.022 55 

4.59 0.022 0.056 45 0.052 0.094 47.5 0.09 0.051 52.5 0.058 0.023 55 

4.98 0.02 0.054 45 0.051 0.095 47.5 0.093 0.052 52.5 0.062 0.023 55 

5.02 0.019 0.057 45 0.047 0.098 47.5 0.098 0.049 52.5 0.061 0.02 55 

4.81 0.025 0.058 45 0.05 0.095 47.5 0.091 0.047 52.5 0.052 0.023 55 

4.8 0.021 0.054 45 0.048 0.092 47.5 0.105 0.049 52.5 0.06 0.021 55 

4.86 0.019 0.056 45 0.045 0.095 47.5 0.102 0.046 52.5 0.054 0.021 55 

4.85 0.018 0.056 45 0.043 0.1 47.5 0.101 0.047 52.5 0.055 0.022 55 

4.97 0.023 0.054 45 0.04 0.098 47.5 0.098 0.044 52.5 0.055 0.019 55 

5.1 0.021 0.054 45 0.043 0.105 47.5 0.103 0.041 52.5 0.051 0.021 55 

5.24 0.02 0.052 45 0.043 0.106 47.5 0.101 0.044 52.5 0.052 0.019 55 

5.14 0.02 0.049 45 0.045 0.105 47.5 0.103 0.043 52.5 0.05 0.023 55 

5.44 0.019 0.051 45 0.038 0.107 47.5 0.108 0.039 52.5 0.051 0.018 55 

5.31 0.019 0.052 45 0.041 0.107 47.5 0.109 0.037 52.5 0.05 0.018 55 

5.4 0.016 0.046 45 0.036 0.11 47.5 0.109 0.038 52.5 0.05 0.019 55 

5.26 0.017 0.05 45 0.032 0.117 47.5 0.113 0.035 52.5 0.046 0.018 55 

5.57 0.016 0.045 45 0.032 0.115 47.5 0.113 0.034 52.5 0.046 0.018 55 

5.82 0.016 0.044 45 0.029 0.11 47.5 0.117 0.03 52.5 0.043 0.017 55 

5.68 0.019 0.043 45 0.028 0.11 47.5 0.113 0.029 52.5 0.043 0.018 55 

6.08 0.018 0.043 45 0.028 0.117 47.5 0.117 0.027 52.5 0.041 0.017 55 

5.67 0.02 0.041 45 0.025 0.118 47.5 0.111 0.023 52.5 0.044 0.018 55 

5.96 0.018 0.038 45 0.026 0.116 47.5 0.109 0.025 52.5 0.035 0.019 55 

5.74 0.019 0.038 45 0.025 0.116 47.5 0.109 0.021 52.5 0.04 0.018 55 

6.03 0.015 0.039 45 0.023 0.108 47.5 0.11 0.024 52.5 0.036 0.02 55 

 

 

Table G3: GW-CSOF Estimate of Location of & Error at Optimal Cutscore with Increasing 

Kurtosis 

 45   47.5   52.5   55   

 fp fn loc fp fn loc fp fn loc fp fn loc 

3.03 0.056 0.028 43.7 0.076 0.052 46.8 0.055 0.075 53.1 0.031 0.057 56.2 

3.14 0.056 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

3.11 0.057 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 

3.12 0.055 0.028 43.7 0.075 0.052 46.8 0.055 0.076 53.1 0.031 0.058 56.2 

3.31 0.056 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.028 0.057 56.3 

3.28 0.057 0.028 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

3.31 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

3.39 0.057 0.028 43.7 0.073 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

3.39 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.074 53.1 0.03 0.055 56.2 

3.53 0.057 0.028 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.03 0.055 56.2 

3.49 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 
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3.61 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.058 56.3 

3.58 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

3.82 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

3.67 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.03 0.056 56.2 

3.9 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

3.9 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

4.08 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

4.01 0.056 0.03 43.8 0.074 0.055 46.9 0.054 0.073 53.1 0.028 0.056 56.3 

4.15 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

4.08 0.057 0.031 43.8 0.075 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

4.21 0.056 0.03 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 

4.63 0.056 0.028 43.7 0.076 0.052 46.8 0.055 0.075 53.1 0.031 0.057 56.2 

4.39 0.057 0.029 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

4.47 0.057 0.031 43.8 0.075 0.055 46.9 0.055 0.074 53.1 0.029 0.058 56.3 

4.54 0.057 0.029 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

4.69 0.057 0.028 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.03 0.055 56.2 

4.59 0.057 0.029 43.7 0.074 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

4.98 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.056 56.2 

5.02 0.057 0.029 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

4.81 0.057 0.031 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.028 0.057 56.3 

4.8 0.057 0.029 43.7 0.073 0.055 46.9 0.056 0.075 53.1 0.032 0.057 56.2 

4.86 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

4.85 0.057 0.029 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.057 56.2 

4.97 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

5.1 0.056 0.03 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 

5.24 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

5.14 0.058 0.031 43.8 0.075 0.055 46.9 0.052 0.075 53.2 0.028 0.056 56.3 

5.44 0.058 0.029 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.031 0.056 56.2 

5.31 0.058 0.029 43.7 0.074 0.055 46.9 0.056 0.075 53.1 0.032 0.057 56.2 

5.4 0.057 0.028 43.7 0.074 0.055 46.9 0.055 0.074 53.1 0.03 0.056 56.2 

5.26 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

5.57 0.055 0.028 43.7 0.075 0.052 46.8 0.055 0.075 53.1 0.031 0.057 56.2 

5.82 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

5.68 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.074 53.1 0.03 0.055 56.2 

6.08 0.055 0.03 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.028 0.057 56.3 

5.67 0.056 0.028 43.7 0.073 0.055 46.9 0.055 0.075 53.1 0.031 0.056 56.2 

5.96 0.056 0.03 43.8 0.075 0.055 46.9 0.055 0.073 53.1 0.028 0.056 56.3 

5.74 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

6.03 0.056 0.031 43.8 0.074 0.055 46.9 0.055 0.074 53.1 0.029 0.057 56.3 

 

Table G4: GW-CSOF Error Rates at True Cutscore Location with Increasing Kurtosis 

 45   47.5   52.5   55   

 fp fn loc fp fn loc fp fn loc fp fn loc 
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3.03 0.034 0.061 45 0.056 0.075 47.5 0.076 0.058 52.5 0.063 0.036 55 

3.14 0.034 0.061 45 0.057 0.076 47.5 0.076 0.056 52.5 0.061 0.034 55 

3.11 0.035 0.062 45 0.058 0.076 47.5 0.075 0.056 52.5 0.06 0.033 55 

3.12 0.033 0.06 45 0.055 0.075 47.5 0.076 0.058 52.5 0.063 0.036 55 

3.31 0.035 0.062 45 0.057 0.076 47.5 0.075 0.056 52.5 0.061 0.034 55 

3.28 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.061 0.035 55 

3.31 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

3.39 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

3.39 0.034 0.06 45 0.056 0.075 47.5 0.076 0.057 52.5 0.061 0.034 55 

3.53 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

3.49 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.035 55 

3.61 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

3.58 0.034 0.061 45 0.056 0.075 47.5 0.076 0.058 52.5 0.062 0.035 55 

3.82 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

3.67 0.034 0.06 45 0.056 0.075 47.5 0.076 0.057 52.5 0.062 0.035 55 

3.9 0.035 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

3.9 0.034 0.061 45 0.057 0.076 47.5 0.076 0.056 52.5 0.061 0.034 55 

4.08 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

4.01 0.034 0.061 45 0.057 0.076 47.5 0.075 0.056 52.5 0.06 0.033 55 

4.15 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

4.08 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

4.21 0.035 0.062 45 0.057 0.076 47.5 0.075 0.056 52.5 0.06 0.034 55 

4.63 0.034 0.061 45 0.056 0.075 47.5 0.076 0.058 52.5 0.062 0.035 55 

4.39 0.034 0.061 45 0.056 0.076 47.5 0.076 0.058 52.5 0.062 0.035 55 

4.47 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

4.54 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

4.69 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

4.59 0.035 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

4.98 0.033 0.06 45 0.056 0.075 47.5 0.076 0.057 52.5 0.062 0.035 55 

5.02 0.034 0.061 45 0.056 0.075 47.5 0.076 0.058 52.5 0.062 0.035 55 

4.81 0.035 0.062 45 0.057 0.076 47.5 0.075 0.056 52.5 0.061 0.034 55 

4.8 0.035 0.062 45 0.057 0.076 47.5 0.076 0.058 52.5 0.063 0.036 55 

4.86 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

4.85 0.035 0.061 45 0.057 0.076 47.5 0.076 0.058 52.5 0.062 0.035 55 

4.97 0.034 0.061 45 0.057 0.076 47.5 0.076 0.056 52.5 0.061 0.034 55 

5.1 0.035 0.061 45 0.057 0.076 47.5 0.075 0.056 52.5 0.061 0.034 55 

5.24 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

5.14 0.036 0.063 45 0.058 0.076 47.5 0.075 0.056 52.5 0.061 0.034 55 

5.44 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.062 0.035 55 

5.31 0.035 0.062 45 0.057 0.076 47.5 0.076 0.058 52.5 0.062 0.036 55 

5.4 0.034 0.061 45 0.056 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

5.26 0.034 0.061 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

5.57 0.033 0.06 45 0.056 0.075 47.5 0.076 0.058 52.5 0.062 0.036 55 

5.82 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

5.68 0.034 0.061 45 0.056 0.075 47.5 0.076 0.057 52.5 0.061 0.034 55 
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6.08 0.034 0.061 45 0.057 0.076 47.5 0.076 0.056 52.5 0.061 0.034 55 

5.67 0.034 0.061 45 0.056 0.075 47.5 0.076 0.057 52.5 0.062 0.035 55 

5.96 0.035 0.062 45 0.057 0.076 47.5 0.075 0.056 52.5 0.06 0.033 55 

5.74 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 

6.03 0.035 0.062 45 0.057 0.076 47.5 0.076 0.057 52.5 0.061 0.034 55 
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Appendix H: R Code 

H1: Code for the Callable GW Function 

#/*  

callable GW function 

#*/ 

 

if(require(moments)==FALSE){install.packages('moments')} 

if(require(ggplot2)==FALSE){install.packages('ggplot2')} 

library(ggplot2) 

library(moments) 

gandw=function(obsmean,obsvar,truecut) 

{ 

  #GW method as a callable function for tabling 

  #######Functions (run these first) 

  phi=function(x) 

  {(1/2)*(1+erf(x/sqrt(2)))} 

  falseposfunc2=function(theta)  

  { 

    (1-phi(((c-theta)/sderr)))*dnorm(theta,obsscoremean,truesd)#exp(-(theta^2)/2) 

  } 

  falsenegfunc2=function(theta) 

  { 

    (1-(1-phi(((c-theta)/sderr))))*dnorm(theta,obsscoremean,truesd) 

  } 

  library(pracma) 

  obsscoremean=obsmean 
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  sdobs=sqrt(obsvar) 

  rel=.8 

  w=1 

  sderr=sqrt(1-rel)*sdobs 

  truevar=rel*(sdobs)^2 

  truesd=sqrt(truevar) 

  newmat2=matrix(nrow=100000,ncol=7) 

  colnames(newmat2)=c("theta","wce","FP","FN","wcec","FPc","FNc") 

  fpvec2=Vectorize(falseposfunc2,'theta') 

  fnvec2=Vectorize(falsenegfunc2,'theta') 

  pshouldfail=pnorm((truecut-obsscoremean)/truesd,0,1) 

  pshouldpass=1-pshouldfail 

  w=1 

  c=20 

 # end=4*sdobs+truecut 

  i=1 

  while(c<=90) 

  { 

    fp2=integrate(fpvec2,-Inf,truecut) 

    fn2=integrate(fnvec2,truecut,Inf) 

    fpc=fp2$value/pshouldfail 

    fnc=fn2$value/pshouldpass 

    wce=(w*fp2$value+fn2$value) 

    newmat2[i,1]=c 

    newmat2[i,2]=wce 
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    newmat2[i,3]=fp2$value 

    newmat2[i,4]=fn2$value 

    newmat2[i,5]=(1/2)*(fpc+fnc) 

    newmat2[i,6]=fpc 

    newmat2[i,7]=fnc 

    i=i+1 

    c=c+.1 

  } 

  outmat=subset(newmat2,newmat2[,2]>0) 

#optimal error point 

loc=which(outmat[,2]==min(outmat[,2])) 

minerrC=outmat[loc,1] 

minerrFP=outmat[loc,3] 

minerrFN=outmat[loc,4] 

#now I need error at the true cut 

a=round(as.vector(outmat[,1]),digits=1)   

loc=which(a[]==truecut)   

truecutFP=outmat[loc,3] 

truecutFN=outmat[loc,4] 

outvector=as.matrix(c(truecutFP,truecutFN,minerrC,minerrFP,minerrFN)) 

rownames(outvector)=c('truecutFP','truecutFN','minerrC','minerrFP','minerrFN') 

return(outvector) 

}#end g&w function 

 

H2: Code for Skewness simulations 
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library(rstudioapi) 

setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 

sourcepath='../'  

source(file.path(sourcepath,'callable GW function.r'))  

Finaloutput=matrix(nrow=10000,ncol=21) 

colnames(Finaloutput)=c('distribution.degree.of.nonnorm','truescore.degree.of.nonnorm','obs.degree.o

f.nonnorm','mean.true','mean.obs','var.true','var.obs','actual.fp.at.truecut','actual.fn.at.truecut', 

'actual.tot.err.truecut','actual.opt.cut','fp.err.at.opt','fn.err.at.opt','toterr.at.opt', 

'est.fp.at.truecut','est.fn.at.truecut','est.opt.cut','fp.est.at.opt','fn.est.atopt','toterr.est.attrue','toterr.est.

atopt') 

library(ggplot2) 

library(moments) 

set.seed(9999) 

#kurtosis 

#we want to loop from skew=0 to 1.96 

k=0.00 

i=1 # i iterates with k, but needs to be integers increasing by 1 

while(k<=1.96) 

{            

#mixture kurtosis 

skew=k 

theta = sqrt(25*(skew^(2/3))/(2^(2/3))) 

var=25-theta^2 

mew=50-theta 

x=rnorm(10000,mew,sqrt(var))    

y=rexp(10000,1/theta) 
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t=x+y 

skewness(t) 

#let y be the vector of our observed scores, recall that 2.5 is our std err 

z=vector(length=10000) 

n=1 

while(n<=10000) 

{ 

z[n]=rnorm(1,t[n],2.5) 

n=n+1 

} 

trueandobs=cbind(t,z) #true scores on left, obs scores on right 

#okay, now we'll search over score ranges, taking steps of .1 

findat=NULL 

#we'll build this row by row, so start with a vector 

c=20 

while(c<=80) 

{ 

tableofdata=vector(length=4) 

shouldpass=subset(trueandobs,trueandobs[,1]>=45) 

falsenegcount=nrow(subset(shouldpass,shouldpass[,2]<c)) 

shouldfail=subset(trueandobs,trueandobs[,1]<45) 

falseposcount=nrow(subset(shouldfail,shouldfail[,2]>=c)) 

tableofdata[1]=c 

tableofdata[3]=falseposcount/10000 

tableofdata[4]=falsenegcount/10000 
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tableofdata[2]=tableofdata[3]+tableofdata[4] this is column 2, but has to be written after 3 and 4 

findat=rbind(findat,tableofdata) 

c=c+.1 

} 

#need to locate point of optimal error 

#and also line where truecut=45 

loc45=which(round(findat[,1],digits=1)==45) 

locmin=min(which(findat[,2]==min(findat[,2])))  # i take the min of the location, cause sometimes we'll 

get two points with same error/etc. 

#in those rare instances, I'll take the left most (min on horizontal scale) location 

Finaloutput[i,1]=k  #the non-normality parameter (skew, kurt, or distance between modes) 

Finaloutput[i,2]=skewness(t) 

Finaloutput[i,'obs.degree.of.nonnorm']=skewness(z) 

Finaloutput[i,'mean.true']=mean(t) 

Finaloutput[i,'mean.obs']=mean(z) 

Finaloutput[i,'var.true']=var(t) 

Finaloutput[i,'var.obs']=var(z) 

Finaloutput[i,'actual.fp.at.truecut']=findat[loc45,3] 

Finaloutput[i,'actual.fn.at.truecut']=findat[loc45,4] 

Finaloutput[i,'actual.tot.err.truecut']=Finaloutput[i,'actual.fn.at.truecut']+Finaloutput[i,'actual.fp.at.true

cut'] 

Finaloutput[i,'actual.opt.cut']=findat[locmin,1] 

Finaloutput[i,'fp.err.at.opt']=findat[locmin,3] 

Finaloutput[i,'fn.err.at.opt']=findat[locmin,4] 

Finaloutput[i,'toterr.at.opt']=Finaloutput[i,'fp.err.at.opt']+Finaloutput[i,'fn.err.at.opt'] 

#need to call these after the var has been written 
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Finaloutput[i,15:19]=gandw(Finaloutput[i,'mean.obs'],Finaloutput[i,'var.obs'],45) 

Finaloutput[i,'toterr.est.attrue'] =Finaloutput[i,'est.fp.at.truecut']+Finaloutput[i,'est.fn.at.truecut'] 

Finaloutput[i,'toterr.est.atopt']= Finaloutput[i,'fp.est.at.opt']+Finaloutput[i,'fn.est.atopt'] 

  

i=i+1 

k=round(k+.04,digits=3)  

}# END OF skewness LOOP 

output=Finaloutput[1:50,] 

write.csv(output,file='skewness45.csv') 

 

H3: Code for Bimodal simulations 

library(rstudioapi) 

setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 

sourcepath='../../'  

source(file.path(sourcepath,'callable GW function.r'))  #file path does our paste work for us 

modeless50 <- function(v2) { 

u=round(v2,digits=1) 

v=subset(u,u<=49.8)  

u=round(u,digits=0) 

uniqv <- unique(v) 

uniqv[which.max(tabulate(match(v, uniqv)))] 

} 

modemore50 <- function(v2) { 

u=round(v2,digits=1) 

v=subset(u,u>=50.2) 
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uniqv <- unique(v) 

uniqv[which.max(tabulate(match(v, uniqv)))] 

} 

Finaloutput=matrix(nrow=10000,ncol=21) 

colnames(Finaloutput)=c('distribution.degree.of.nonnorm','truescore.degree.of.nonnorm','obs.degree.o

f.nonnorm','mean.true','mean.obs','var.true','var.obs','actual.fp.at.truecut','actual.fn.at.truecut', 

'actual.tot.err.truecut','actual.opt.cut','fp.err.at.opt','fn.err.at.opt','toterr.at.opt', 

'est.fp.at.truecut','est.fn.at.truecut','est.opt.cut','fp.est.at.opt','fn.est.atopt','toterr.est.attrue','toterr.est.

atopt') 

library(moments) 

set.seed(9999) 

#we want to loop from k=7 to k=9.94. do 50 total. I have (effectively) 3/50 = a delta x of .06 

k=7.00 

i=1 # i iterates with k, but needs to be integers increasing by 1 

while(k<=9.94) 

{            

#mixture bimodality 

#let  

d=k #then  

mew2=(100+d)/2 

mew1=100-mew2 

v=25+(50)^2-2500-(d^2)/4 

x=rnorm(5000,mew2,sqrt(v) ) 

y=rnorm(5000,mew1,sqrt(v))  

t=c(x,y) 

var(t) 
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#let y be the vector of our observed scores, recall that 2.5 is our std err 

z=vector(length=10000) 

n=1 

while(n<=10000) 

{ 

z[n]=rnorm(1,t[n],2.5) 

n=n+1 

} 

trueandobs=cbind(t,z) #true scores on left, obs scores on right 

#okay, now we'll search over score ranges, taking steps of .5 

findat=NULL 

#we'll build this row by row, so start with a vector 

c=20 

while(c<=80) 

{ 

tableofdata=vector(length=4) 

shouldpass=subset(trueandobs,trueandobs[,1]>=45) 

falsenegcount=nrow(subset(shouldpass,shouldpass[,2]<c)) 

shouldfail=subset(trueandobs,trueandobs[,1]<45) 

falseposcount=nrow(subset(shouldfail,shouldfail[,2]>=c)) 

tableofdata[1]=c 

tableofdata[3]=falseposcount/10000 

tableofdata[4]=falsenegcount/10000 

tableofdata[2]=tableofdata[3]+tableofdata[4] # are you watching? this is column 2, but has to be written 

after 3 and 4 

findat=rbind(findat,tableofdata) 



126 
 

c=c+.1 

} 

#need to locate point of optimal error 

#and also line where truecut=45 

loc45=which(round(findat[,1],digits=1)==45) 

locmin=min(which(findat[,2]==min(findat[,2])))  # i take the min of the location, cause sometimes we'll 

get two points with same error/etc. 

#in those rare instances, I'll take the left most (min on horizontal scale) location 

Finaloutput[i,1]=k  #the non-normality parameter (skew, kurt, or distance between modes) 

Finaloutput[i,2]=modemore50(t)-modeless50(t) 

Finaloutput[i,'obs.degree.of.nonnorm']=modemore50(z)-modeless50(z) 

Finaloutput[i,'mean.true']=mean(t) 

Finaloutput[i,'mean.obs']=mean(z) 

Finaloutput[i,'var.true']=var(t) 

Finaloutput[i,'var.obs']=var(z) 

Finaloutput[i,'actual.fp.at.truecut']=findat[loc45,3] 

Finaloutput[i,'actual.fn.at.truecut']=findat[loc45,4] 

Finaloutput[i,'actual.tot.err.truecut']=Finaloutput[i,'actual.fn.at.truecut']+Finaloutput[i,'actual.fp.at.true

cut'] 

Finaloutput[i,'actual.opt.cut']=findat[locmin,1] 

Finaloutput[i,'fp.err.at.opt']=findat[locmin,3] 

Finaloutput[i,'fn.err.at.opt']=findat[locmin,4] 

Finaloutput[i,'toterr.at.opt']=Finaloutput[i,'fp.err.at.opt']+Finaloutput[i,'fn.err.at.opt'] 

#need to call these after the var has been written 

Finaloutput[i,15:19]=gandw(Finaloutput[i,'mean.obs'],Finaloutput[i,'var.obs'],45) 

Finaloutput[i,'toterr.est.attrue'] =Finaloutput[i,'est.fp.at.truecut']+Finaloutput[i,'est.fn.at.truecut'] 
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Finaloutput[i,'toterr.est.atopt']= Finaloutput[i,'fp.est.at.opt']+Finaloutput[i,'fn.est.atopt'] 

  

i=i+1 

k=round(k+.06,digits=3)  

}# end bimodiality loop 

output=Finaloutput[1:50,] 

write.csv(output,file='bimodality45.csv') 

 

H4: Code for Kurtosis simulations 

library(rstudioapi) 

setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) 

sourcepath='../'  

source(file.path(sourcepath,'callable GW function.r'))   

Finaloutput=matrix(nrow=10000,ncol=21) 

colnames(Finaloutput)=c('distribution.degree.of.nonnorm','truescore.degree.of.nonnorm','obs.degree.o

f.nonnorm','mean.true','mean.obs','var.true','var.obs','actual.fp.at.truecut','actual.fn.at.truecut', 

'actual.tot.err.truecut','actual.opt.cut','fp.err.at.opt','fn.err.at.opt','toterr.at.opt',                   

'est.fp.at.truecut','est.fn.at.truecut','est.opt.cut','fp.est.at.opt','fn.est.atopt','toterr.est.attrue','toterr.est.

atopt') 

library(moments) 

set.seed(9999) 

#kurtosis 

#we want to loop from k=3 to k=5.99. I proposed to do 50 total. I have (effectively) 3/50 = a delta x of 

.06 

k=3.00 

i=1 # i iterates with k, but needs to be integers increasing by 1 

while(k<=5.999) 
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{           #BEGIN KURTOSIS LOOP 

#mixture kurtosis 

 

  var2=sqrt(((k*625)/3)-1250+625)+25 

var1 = (25-.5*(var2))/.5 

 

  x=rnorm(5000,50,sqrt(var2))  

  y=rnorm(5000,50,sqrt(var1))  

t=c(x,y) 

 

#let y be the vector of our observed scores, recall that 2.5 is our std err 

z=vector(length=10000) 

n=1 

while(n<=10000) 

{ 

  z[n]=rnorm(1,t[n],2.5) 

  n=n+1 

} 

trueandobs=cbind(t,z) #true scores on left, obs scores on right 

#okay, now we'll search over score ranges, taking steps of .1 

findat=NULL#vector(length=4) 

#we'll build this row by row, so start with a vector 

c=20 

while(c<=80) 

{ 
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  tableofdata=vector(length=4) 

  shouldpass=subset(trueandobs,trueandobs[,1]>=45) 

falsenegcount=nrow(subset(shouldpass,shouldpass[,2]<c)) 

shouldfail=subset(trueandobs,trueandobs[,1]<45) 

falseposcount=nrow(subset(shouldfail,shouldfail[,2]>=c)) 

tableofdata[1]=c 

  tableofdata[3]=falseposcount/10000 

  tableofdata[4]=falsenegcount/10000 

  tableofdata[2]=tableofdata[3]+tableofdata[4] # this is column 2, but has to be written after 3 and 4 

findat=rbind(findat,tableofdata) 

c=c+.1 

} 

#need to locate point of optimal error 

#and also line where truecut=45 

loc45=which(round(findat[,1],digits=1)==45) 

locmin=min(which(findat[,2]==min(findat[,2])))  # i take the min of the location, cause sometimes we'll 

get two points with same error/etc. 

                                                  #in those rare instances, I'll take the left most (min on horizontal scale) 

location 

Finaloutput[i,1]=k  #the non-normality parameter (skew, kurt, or distance between modes) 

Finaloutput[i,2]=kurtosis(t) 

Finaloutput[i,'obs.degree.of.nonnorm']=kurtosis(z) 

Finaloutput[i,'mean.true']=mean(t) 

Finaloutput[i,'mean.obs']=mean(z) 

Finaloutput[i,'var.true']=var(t) 

Finaloutput[i,'var.obs']=var(z) 
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Finaloutput[i,'actual.fp.at.truecut']=findat[loc45,3] 

Finaloutput[i,'actual.fn.at.truecut']=findat[loc45,4] 

Finaloutput[i,'actual.tot.err.truecut']=Finaloutput[i,'actual.fn.at.truecut']+Finaloutput[i,'actual.fp.at.true

cut'] 

Finaloutput[i,'actual.opt.cut']=findat[locmin,1] 

Finaloutput[i,'fp.err.at.opt']=findat[locmin,3] 

Finaloutput[i,'fn.err.at.opt']=findat[locmin,4] 

Finaloutput[i,'toterr.at.opt']=Finaloutput[i,'fp.err.at.opt']+Finaloutput[i,'fn.err.at.opt'] 

#need to call these after the var has been written 

Finaloutput[i,15:19]=gandw(Finaloutput[i,'mean.obs'],Finaloutput[i,'var.obs'],45) 

Finaloutput[i,'toterr.est.attrue'] =Finaloutput[i,'est.fp.at.truecut']+Finaloutput[i,'est.fn.at.truecut'] 

Finaloutput[i,'toterr.est.atopt']= Finaloutput[i,'fp.est.at.opt']+Finaloutput[i,'fn.est.atopt'] 

i=i+1 

k=round(k+.06,digits=3)  

}# END OF KURTOSIS LOOP 

output=Finaloutput[1:50,] 

write.csv(output,file='kurtosis45.csv') 

 

 

 

 

 

 

 

 


